4,043 research outputs found

    Nonextensive diffusion as nonlinear response

    Full text link
    The porous media equation has been proposed as a phenomenological ``non-extensive'' generalization of classical diffusion. Here, we show that a very similar equation can be derived, in a systematic manner, for a classical fluid by assuming nonlinear response, i.e. that the diffusive flux depends on gradients of a power of the concentration. The present equation distinguishes from the porous media equation in that it describes \emph{% generalized classical} diffusion, i.e. with r/Dtr/\sqrt Dt scaling, but with a generalized Einstein relation, and with power-law probability distributions typical of nonextensive statistical mechanics

    Statistics of precursors to fingering processes

    Full text link
    We present an analysis of the statistical properties of hydrodynamic field fluctuations which reveal the existence of precursors to fingering processes. These precursors are found to exhibit power law distributions, and these power laws are shown to follow from spatial qq-Gaussian structures which are solutions to the generalized non-linear diffusion equation.Comment: 7 pages incl. 5 figs; tp appear in Europhysics Letter

    Is the Tsallis entropy stable?

    Full text link
    The question of whether the Tsallis entropy is Lesche-stable is revisited. It is argued that when physical averages are computed with the escort probabilities, the correct application of the concept of Lesche-stability requires use of the escort probabilities. As a consequence, as shown here, the Tsallis entropy is unstable but the thermodynamic averages are stable. We further show that Lesche stability as well as thermodynamic stability can be obtained if the homogeneous entropy is used as the basis of the formulation of non-extensive thermodynamics. In this approach, the escort distribution arises naturally as a secondary structure.Comment: 6 page

    Questioning the validity of non-extensive thermodynamics for classical Hamiltonian systems

    Full text link
    We examine the non-extensive approach to the statistical mechanics of Hamiltonian systems with H=T+VH=T+V where TT is the classical kinetic energy. Our analysis starts from the basics of the formalism by applying the standard variational method for maximizing the entropy subject to the average energy and normalization constraints. The analytical results show (i) that the non-extensive thermodynamics formalism should be called into question to explain experimental results described by extended exponential distributions exhibiting long tails, i.e. qq-exponentials with q>1q>1, and (ii) that in the thermodynamic limit the theory is only consistent in the range 0≤q≤10\leq q\leq1 where the distribution has finite support, thus implying that configurations with e.g. energy above some limit have zero probability, which is at variance with the physics of systems in contact with a heat reservoir. We also discuss the (qq-dependent) thermodynamic temperature and the generalized specific heat.Comment: To appear in EuroPhysics Letter

    Breakdown of Hydrodynamic Transport Theory in the Ordered Phase of Helimagnets

    Full text link
    It is shown that strong fluctuations preclude a hydrodynamic description of transport phenomena in helimagnets, such as MnSi, at T>0. This breakdown of hydrodynamics is analogous to the one in chiral liquid crystals. Mode-mode coupling effects lead to infinite renormalizations of various transport coefficients, and the actual macroscopic description is nonlocal. At T=0 these effects are weakened due to the fluctuation-dissipation theorem, and the renormalizations remain finite. Observable consequences of these results, as manifested in the neutron scattering cross-section, are discussedComment: 4pp., 1 eps figur

    The Rayleigh-Brillouin Spectrum in Special Relativistic Hydrodynamics

    Full text link
    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to non-equilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic non-equilibrium thermodynamics. The answer will clearly require deeper examination of this problem.Comment: 13 pages, no figures. Accepted for publication in Phys. Rev.

    Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine

    Get PDF
    The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in human

    Investigation of the water table in a tidal beach : final report

    Get PDF
    I. Instrumentation for Measurement of Water Table Fluctuations by John D. Boon, III, and W. Harrison II. The Beach Water Table as a Response Variable of the System by L. E. Fausak III. Changes in Foreshore Sand Volume: Role of Fluctuations in Water Table and Ocean Still Water Level by W. Harrison IV. One-dimensional Finite Element Analysis of the Groundwater Flow by W. Harrison, C. S. Fang, and S. N. Wang V. Two-dimensional Finite Element Analysis of the Groundwater Flow by C. S. Fang, S. N. Wang, and W. Harriso
    • …
    corecore