258 research outputs found

    A saturation property of structures obtained by forcing with a compact family of random variables

    Full text link
    A method how to construct Boolean-valued models of some fragments of arithmetic was developed in Krajicek (2011), with the intended applications in bounded arithmetic and proof complexity. Such a model is formed by a family of random variables defined on a pseudo-finite sample space. We show that under a fairly natural condition on the family (called compactness in K.(2011)) the resulting structure has a property that is naturally interpreted as saturation for existential types. We also give an example showing that this cannot be extended to universal types.Comment: preprint February 201

    Generalizing Tsirelson's bound on Bell inequalities using a min-max principle

    Full text link
    Bounds on the norm of quantum operators associated with classical Bell-type inequalities can be derived from their maximal eigenvalues. This quantitative method enables detailed predictions of the maximal violations of Bell-type inequalities.Comment: 4 pages, 2 figures, RevTeX4, replaced with published versio

    New optimal tests of quantum nonlocality

    Full text link
    We explore correlation polytopes to derive a set of all Boole-Bell type conditions of possible classical experience which are both maximal and complete. These are compared with the respective quantum expressions for the Greenberger-Horne-Zeilinger (GHZ) case and for two particles with spin state measurements along three directions.Comment: 10 page

    Testing the bounds on quantum probabilities

    Full text link
    Bounds on quantum probabilities and expectation values are derived for experimental setups associated with Bell-type inequalities. In analogy to the classical bounds, the quantum limits are experimentally testable and therefore serve as criteria for the validity of quantum mechanics.Comment: 9 pages, Revte

    Bell inequalities as constraints on unmeasurable correlations

    Full text link
    The interpretation of the violation of Bell-Clauser-Horne inequalities is revisited, in relation with the notion of extension of QM predictions to unmeasurable correlations. Such extensions are compatible with QM predictions in many cases, in particular for observables with compatibility relations described by tree graphs. This implies classical representability of any set of correlations , , , and the equivalence of the Bell-Clauser-Horne inequalities to a non void intersection between the ranges of values for the unmeasurable correlation associated to different choices for B. The same analysis applies to the Hardy model and to the "perfect correlations" discussed by Greenberger, Horne, Shimony and Zeilinger. In all the cases, the dependence of an unmeasurable correlation on a set of variables allowing for a classical representation is the only basis for arguments about violations of locality and causality.Comment: Some modifications have been done in order to improve clarity of presentation and comparison with other approache

    Pointwise convergence of Birkhoff averages for global observables

    Full text link
    It is well-known that a strict analogue of the Birkhoff Ergodic Theorem in infinite ergodic theory is trivial; it states that for any infinite-measure-preserving ergodic system the Birkhoff average of every integrable function is almost everywhere zero. Nor does a different rescaling of the Birkhoff sum that leads to a non-degenerate pointwise limit exist. In this paper we give a version of Birkhoff's theorem for conservative, ergodic, infinite-measure-preserving dynamical systems where instead of integrable functions we use certain elements of LL^\infty, which we generically call global observables. Our main theorem applies to general systems but requires an hypothesis of "approximate partial averaging" on the observables. The idea behind the result, however, applies to more general situations, as we show with an example. Finally, by means of counterexamples and numerical simulations, we discuss the question of finding the optimal class of observables for which a Birkhoff theorem holds for infinite-measure-preserving systems.Comment: Final version. 33 pages, 10 figure

    Localization Bounds for Multiparticle Systems

    Full text link
    We consider the spectral and dynamical properties of quantum systems of nn particles on the lattice Zd\Z^d, of arbitrary dimension, with a Hamiltonian which in addition to the kinetic term includes a random potential with iid values at the lattice sites and a finite-range interaction. Two basic parameters of the model are the strength of the disorder and the strength of the interparticle interaction. It is established here that for all nn there are regimes of high disorder, and/or weak enough interactions, for which the system exhibits spectral and dynamical localization. The localization is expressed through bounds on the transition amplitudes, which are uniform in time and decay exponentially in the Hausdorff distance in the configuration space. The results are derived through the analysis of fractional moments of the nn-particle Green function, and related bounds on the eigenfunction correlators

    How much contextuality?

    Full text link
    The amount of contextuality is quantified in terms of the probability of the necessary violations of noncontextual assignments to counterfactual elements of physical reality.Comment: 5 pages, 3 figure

    Hahn's Symmetric Quantum Variational Calculus

    Get PDF
    We introduce and develop the Hahn symmetric quantum calculus with applications to the calculus of variations. Namely, we obtain a necessary optimality condition of Euler-Lagrange type and a sufficient optimality condition for variational problems within the context of Hahn's symmetric calculus. Moreover, we show the effectiveness of Leitmann's direct method when applied to Hahn's symmetric variational calculus. Illustrative examples are provided.Comment: This is a preprint of a paper whose final and definite form will appear in the international journal Numerical Algebra, Control and Optimization (NACO). Paper accepted for publication 06-Sept-201

    The Schr\"oder functional equation and its relation to the invariant measures of chaotic maps

    Full text link
    The aim of this paper is to show that the invariant measure for a class of one dimensional chaotic maps, T(x)T(x), is an extended solution of the Schr\"oder functional equation, q(T(x))=λq(x)q(T(x))=\lambda q(x), induced by them. Hence, we give an unified treatment of a collection of exactly solved examples worked out in the current literature. In particular, we show that these examples belongs to a class of functions introduced by Mira, (see text). Moreover, as a new example, we compute the invariant densities for a class of rational maps having the Weierstrass \wp functions as an invariant one. Also, we study the relation between that equation and the well known Frobenius-Perron and Koopman's operators.Comment: 9 page
    corecore