3 research outputs found

    The Readiness of Water Molecules to Split into Hydrogen + Oxygen: A Proposed New Aspect of Water Splitting

    Get PDF
    The potential of the anode, at which the evolution of oxygen begins, is a key parameter that describes how well water is split in water electrolyzers. Research efforts related to electrocatalytically initiated water splitting that aim at reducing the oxygen evolution reaction (OER) overpotential to date focus on the optimization of materials used to produce the electrodes. Descriptors for the readiness of the H2O molecule itself to break down into its components have not been considered in water electrolysis experiments so far. In a simple set of experiments, it is found that adding dioxane to aqueous solutions leads to a substantial blueshift of the frequency of the O-H stretch vibration which is a sign of an increased strength of the O-H bond (intramolecular bonding). This phenomenon coincides with a significant increase in the OER onset potential as derived from cyclic voltammetry experiments. Thus, the O-H stretch frequency can be an ideal indicator for the readiness of water molecules to be split in its cleavage products. This is thought to be first example of a study into the relationship between structural features of water as derived from Fourier transform infrared(FTIR) spectroscopic studies and key results derived from water electrolysis experiments

    Use of suspended particles as a new approach to increase the active electrode area in water electrolysis experiments

    No full text
    The development of base metal electrodes that can act as active and stable oxygen generating electrodes in water electrolysis systems, especially at low pH levels, remains a challenge. The use of suspensions as electrolytes for water splitting has until recently been limited to photoelectrocatalytic approaches. A high current density (j=30 mA/cm2) for water electrolysis has been achieved at a very low oxygen evolution reaction (OER) potential (E=1.36 V vs. RHE) using a SnO2/H2SO4 suspension-based electrolyte in combination with a steel anode. More importantly, the high charge-to-oxygen conversion rate (Faraday efficiency of 88% for OER at j=10 mA/cm2 current density). Since cyclic voltammetry (CV) experiments show that oxygen evolution starts at a low, but not exceptionally low, potential, the reason for the low potential in chronoamperometry (CP) tests is an increase in the active electrode area, which has been confirmed by various experiments. For the first time, the addition of a relatively small amount of solids to a clear electrolyte has been shown to significantly reduce the overpotential of the OER in water electrolysis down to the 100 mV region, resulting in a remarkable reduction in anode wear while maintaining a high current density

    Increased Readiness for Water Splitting: NiO-Induced Weakening of Bonds in Water Molecules as Possible Cause of Ultra-Low Oxygen Evolution Potential

    No full text
    Bookholt T, Qin X, Lilli B, et al. Increased Readiness for Water Splitting: NiO-Induced Weakening of Bonds in Water Molecules as Possible Cause of Ultra-Low Oxygen Evolution Potential. Small . 2024: 2310665.The development of non-precious metal-based electrodes that actively and stably support the oxygen evolution reaction (OER) in water electrolysis systems remains a challenge, especially at low pH levels. The recently published study has conclusively shown that the addition of haematite to H2 SO4 is a highly effective method of significantly reducing oxygen evolution overpotential and extending anode life. The far superior result is achieved by concentrating oxygen evolution centres on the oxide particles rather than on the electrode. However, unsatisfactory Faradaic efficiencies of the OER and hydrogen evolution reaction (HER) parts as well as the required high haematite load impede applicability and upscaling of this process. Here it is shown that the same performance is achieved with three times less metal oxide powder if NiO/H2 SO4 suspensions are used along with stainless steel anodes. The reason for the enormous improvement in OER performance by adding NiO to the electrolyte is the weakening of the intramolecular O─H bond in the water molecules, which is under the direct influence of the nickel oxide suspended in the electrolyte. The manipulation of bonds in water molecules to increase the tendency of the water to split is a ground-breaking development, as shown in this first example. © 2024 The Authors. Small published by Wiley-VCH GmbH
    corecore