126 research outputs found

    A bioinformatics workflow for detecting signatures of selection in genomic data

    Get PDF
    The detection of “signatures of selection” is now possible on a genome-wide scale in many plant and animal species, and can be performed in a population-specific manner due to the wealth of per-population genome-wide genotype data that is available. With genomic regions that exhibit evidence of having been under selection shown to also be enriched for genes associated with biologically important traits, detection of evidence of selective pressure is emerging as an additional approach for identifying novel gene-trait associations. While high-density genotype data is now relatively easy to obtain, for many researchers it is not immediately obvious how to go about identifying signatures of selection in these data sets. Here we describe a basic workflow, constructed from open source tools, for detecting and examining evidence of selection in genomic data. Code to install and implement the pipeline components, and instructions to run a basic analysis using the workflow described here, can be downloaded from our public GitHub repository: http://www.github.com/smilefreak/selectionTools

    Ancient and modern mitogenomes from Central Argentina: New insights into population continuity, temporal depth and migration in South America

    Get PDF
    The inverted triangle shape of South America places Argentina territory as a geographical crossroads between the two principal peopling streams that followed either the Pacific or the Atlantic coasts, which could have then merged in Central Argentina (CA). Although the genetic diversity from this region is therefore crucial to decipher past population movements in South America, its characterization has been overlooked so far. We report 92 modern and 22 ancient mitogenomes spanning a temporal range of 5000 years, which were compared with a large set of previously reported data. Leveraging this dataset representative of the mitochondrial diversity of the subcontinent, we investigate the maternal history of CA populations within a wider geographical context. We describe a large number of novel clades within the mitochondrial DNA tree, thus providing new phylogenetic interpretations for South America. We also identify several local clades of great temporal depth with continuity until the present time, which stem directly from the founder haplotypes, suggesting that they originated in the region and expanded from there. Moreover, the presence of lineages characteristic of other South American regions reveals the existence of gene flow to CA. Finally, we report some lineages with discontinuous distribution across the Americas, which suggest the persistence of relic lineages likely linked to the first population arrivals. The present study represents to date the most exhaustive attempt to elaborate a Native American genetic map from modern and ancient complete mitochondrial genomes in Argentina and provides relevant information about the general process of settlement in South America.This work was supported by Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (PICT 2007-1549, PICT 2012-711 and PICT 2015-3155), Secretaría de Ciencia y Tecnología (Universidad Nacional de Córdoba), Ministerio de Ciencia y Tecnología de la Provincia de Córdoba (PID 2018-79) and Consejo Nacional de Investigaciones Científicas y Técnicas (2015-11220150100953CO). M.P. is a postdoctoral fellow and A.G., R.N., J.M.B.M, C.M.B., M.F. and D.A.D. are research career members of CONICET, Argentina

    Structural basis for topological regulation of Tn3 resolvase

    Get PDF
    Site-specific DNA recombinases play a variety of biological roles, often related to the dissemination of antibiotic resistance, and are also useful synthetic biology tools. The simplest site-specific recombination systems will recombine any two cognate sites regardless of context. Other systems have evolved elaborate mechanisms, often sensing DNA topology, to ensure that only one of multiple possible recombination products is produced. The closely related resolvases from the Tn3 and γδ transposons have historically served as paradigms for the regulation of recombinase activity by DNA topology. However, despite many proposals, models of the multi-subunit protein–DNA complex (termed the synaptosome) that enforces this regulation have been unsatisfying due to a lack of experimental constraints and incomplete concordance with experimental data. Here, we present new structural and biochemical data that lead to a new, detailed model of the Tn3 synaptosome, and discuss how it harnesses DNA topology to regulate the enzymatic activity of the recombinase

    Childhood in Sociology and Society: The US Perspective

    Get PDF
    The field of childhood studies in the US is comprised of cross-disciplinary researchers who theorize and conduct research on both children and youth. US sociologists who study childhood largely draw on the childhood literature published in English. This article focuses on American sociological contributions, but notes relevant contributions from non-American scholars published in English that have shaped and fueled American research. This article also profiles the institutional support of childhood research in the US, specifically outlining the activities of the ‘Children and Youth’ Section of the American Sociological Association (ASA), and assesses the contributions of this area of study for sociology as well as the implications for an interdisciplinary field.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore