20 research outputs found

    What can the Gulf of Mexico and Panama tell us about education and outreach?

    Get PDF
    ABSTRACT: A series of research grants funded by the National Science Foundation involved a major component about education and outreach as it pertained to marine algal diversity. These included comprehensive studies into 1) the diversity of the deep bank marine algae in the Gulf of Mexico (NSF Biodiversity Surveys and Inventories program) and the discovery of unsuspected eukaryotic life inhabiting rhodolith forming coralline algae (NSF DEB), 2) monographic research (NSF PEET), 3) advanced tropical phycology with the integration of modern and traditional techniques in the study of tropical algae of Panama (NSF PASI), among others.info:eu-repo/semantics/publishedVersio

    CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC- Expressing Macrophages

    Get PDF
    Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we examine the role of CD82/ KAI1 in niche-mediated LT-HSC maintenance. We found that CD82/ KAI1 is expressed predominantly on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs). In Cd82 +/-/+/- mice, LTHSCs were selectively lost as they exited from quiescence and differentiated. Mechanistically, CD82based TGF-b1/ Smad3 signaling leads to induction of CDK inhibitors and cell-cycle inhibition. The CD82 binding partner DARC/ CD234 is expressed on macrophages and stabilizes CD82 on LT-HSCs, promoting their quiescence. When DARC + BMmacrophages were ablated, the level of surface CD82 on LT-HSCs decreased, leading to cell-cycle entry, proliferation, and differentiation. A similar interaction appears to be relevant for human HSPCs. Thus, CD82 is a functional surface marker of LT-HSCs that maintains quiescence through interaction with DARC-expressing macrophages in the BM stem cell niche.113525Ysciescopu

    Protoplast isolation from Dictyopteris pacifica and Scytosiphon lomentaria, using a simple commercial enzyme preparation

    No full text
    Abstract Background Protoplasts (i.e., naked plant cells) can be used for in vitro manipulations and genetic improvement in cultivars with economic value. During the last decade, protoplast research in economic brown algae has been scarce, and it is usually hampered by the use of non-commercial enzymes or crude extracts for isolating protoplasts. Dictyopteris pacifica is part of a brown algal genus well known by its wide chemical diversity and biological properties. Scytosiphon lomentaria is an edible brown seaweed with antioxidant, antitumor, and antiviral properties. So far, there are no protoplast isolation protocols using commercial enzymes for these two economic brown algae. In this study, we obtained protoplasts from cultured samples of D. pacifica and S. lomentaria using commercially available enzymes. Additionally, we investigated the effects of Driselase inclusion and Ca-chelation pre-treatment on protoplast yields in order to optimize the conditions for protoplast preparations. Results Protoplasts were isolated from Dictyopteris pacifica and Scytosiphon lomentaria using the commercially available Cellulase Onozuka RS (1%) and Alginate lyase (4 U mL−1), and short incubation time (4 h). Driselase did not show significant effects on protoplast production in both species. Ca-chelation pre-treatment only increased the number of protoplasts in D. pacifica. Under optimal conditions, the protoplast yields from D. pacifica and S. lomentaria were 4.83 ± 2.08 and 74.64 ± 32.49 × 106 protoplasts g−1 fresh weight, respectively. The values obtained for S. lomentaria were 2–3 orders of magnitude higher than previously reported. Conclusions Our results show that high protoplast yields can be obtained from D. pacifica and S. lomentaria using a simple mixture of commercial enzymes (Cellulase RS and Alginate lyase) and short incubation time (4 h). This work also represents the first report of protoplast isolation in D. pacifica. The method proposed here can help to expand protoplast technology in more brown algal species

    Molecular and morphological analyses reveal new taxa additions to the tribe Streblocladieae (Rhodomelaceae, Rhodophyta)

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/168374/1/jpy13144_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/168374/2/jpy13144.pd

    Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector

    No full text
    Graphene (Gr)/Si-based optoelectronic devices have attracted a lot of academic attention due to the simpler fabrication processes, low costs, and higher performance of their two-dimensional (2D)/three-dimensional (3D) hybrid interfaces in Schottky junction that promotes electron-hole separation. However, due to the built-in potential of Gr/Si as a photodetector, theI(ph)/I(dark)ratio is often hindered near zero-bias at relatively low illumination intensity. This is a major drawback in self-powered photodetectors. In this study, we have demonstrated a self-powered van der Waals heterostructure photodetector in the visible range using a Gr/hexagonal boron nitride (h-BN)/Si structure and clarified that the thin h-BN insertion can engineer asymmetric carrier transport and avoid interlayer coupling at the interface. The dark current was able to be suppressed by inserting an h-BN insulator layer, while maintaining the photocurrent with minimal decrease at near zero-bias. As a result, the normalized photocurrent-to-dark ratio (NPDR) is improved more than 10(4)times. Also, bothI(ph)/I(dark)ratio and detectivity, increase by more than 10(4)times at -0.03 V drain voltage. The proposed Gr/h-BN/Si heterostructure is able to contribute to the introduction of next-generation photodetectors and photovoltaic devices based on graphene or silicon.11Nsciescopu

    Corallinapetrales and Corallinapetraceae: A new order and family of coralline red algae including Corallinapetra gabrielii comb. nov.

    No full text
    International audienceThe coralline algal genus Corallinapetra is currently monospecific, and was established on the species Corallinapetra novaezelandiae, known from a single collection from north-eastern New Zealand. On the basis of multi-gene phylogenetic analyses, Corallinapetra has been resolved apart from all currently recognized families and orders within the Corallinophycidae. We analysed DNA sequence data from the holotype of Lithothamnion gabrieli, which has been considered a heterotypic synonym of L. muelleri, and an unidentified sample collected from Stewart Island in New Zealand, using psbA, rbcL, and COI-5P genes. We also observed detailed morphological characters with light and scanning electron microscopy. Our phylogenetic analyses showed that L. gabrieli and the sample from New Zealand belonged to the same clade as Corallinapetra, distinct from other families and orders in the Corallinophycidae. Members of this clade are distinguishable from other families and orders in the Corallinophycidae by possessing sporangia that are surrounded by remnant sterile filaments that are weakly calcified in mature multiporate sporangial conceptacles that produce zonately divided tetrasporangia. Therefore, we propose that Corallinapetra be placed in its own family, Corallinapetraceae and order, Corallinapetrales, and that L. gabrieli should be assigned to Corallinapetra, as C. gabrielii, to reflect their phylogenetic relationships. We also obtained a partial rbcL sequence data from the lectotype of L. muelleri, the generitype of Lithothamnion. Comparison of the L. muelleri type sequence with L. gabrieli unambiguously demonstrated that these two species are not conspecific, and confirm the placement of L. muelleri within the Hapalidiales
    corecore