701 research outputs found

    Nuclear magnetic resonance applications in fermented foods and plant-based beverages: challenges and opportunities

    Get PDF
    Currently, there has been a growing interest in fermented foods and plant-based beverages (PBBs) by the consumers because of the benefits they provide to human health or due to restrictions in the diet associated to some pathologies or personal choices. Nuclear magnetic resonance (NMR) is a versatile technique that presents many advantages for the identification and quantification of metabolites in food with a variety of one- and two-dimensional experiments. This review delves into the current applications of NMR in the fields of fermented foods and PBBs. The interest from researchers in the analysis of fermented foods by NMR in the recent literature mainly focused on three main sub-areas: characterization of exopolysaccharides (EPS) and their functional, and rheological properties; metabolomics to find discriminant markers during and after the process of fermentation for the optimization of the productive process or development of products; and characterization of traditional and novel foods. However, the area of plant-based beverages studies by NMR presented a remarkable literature gap. The opportunities for future investigations concerning food authentication, traceability, and functional food development, among others, are presented

    NMR profiling of grape musts from some Italian regions

    Get PDF
    With wine fraud, being a widespread problem [1], the need for more sophisticated and precise analytical methods of its detection remains ever persistent. Nuclear magnetic resonance (NMR) spectroscopy has been widely used for analysis of wine in recent years [2,3], but wine musts were much less studied; in fact, only one paper dealt with the NMR spectra of actual musts [4]. Difficulties arise mostly because grape musts are “live” objects, which undergo rapid fermentation at room temperature, if not inhibited either by freezing or chemical preservative; but even such measures are not sufficient to halt it completely [5]. We have investigated over 300 samples of grape must from 17 of 20 different Italian regions using 1H NMR spectroscopy with water signal suppression, postprocessing in the MatLab software with dynamic alignment [6] and optimized binning [7] to alleviate the effect of fermentation on the chemical shifts of mobile protons. After that, multivariate statistics was performed with techniques such as PCA, PLS-DA and OPLS-DA with respect to various group parameters such as regions, vitivinicultural zones, harvest periods and grape varieties. Advantages and drawbacks of each method were addresse

    Isotope ratio mass spectrometry (IRMS) methods for distinguishing organic from conventional food products: a review

    Get PDF
    The use of isotopic analytical methods for food authentication was established years ago. Changes in food technology and consumer behavior, as well as the increasing number of cases of food fraud, necessitate ongoing research for reliable analytical authentication techniques. This literature review examines recent applications of stable isotope ratio analysis that can be used in cases of organic food mislabeling. Different isotope ratio mass spectrometry (IRMS) techniques are described in this article, including bulk IRMS analysis and the combination of IRMS with novel sample preparation and compound extraction techniques. Compound-specific IRMS analysis comprising mainly hyphenated techniques, such as gas chromatography GC-IRMS, was also considered, and was found to frequently overcome the limitations exhibited by bulk analysis. A wide range of food product categories were covered, including cereals, vegetables, fruit, animal products, and seafood, while the importance of statistical analysis was underlined in determining which stable isotopic compositions (δ(15N), δ(34S), δ(18O), δ(13C), or δ(2H)) could be used as reliable organic authenticity marker

    Epigenetic therapies for heart failure: Current insights and future potential

    Get PDF
    Despite the current reductionist approach providing an optimal indication for diagnosis and treatment of patients with heart failure with reduced ejection fraction (HFrEF), there are no standard pharmacological therapies for heart failure with preserved ejection fraction (HFpEF). Although in its infancy in cardiovascular diseases, the epigenetic-based therapy (“epidrugs”) is capturing the interest of physician community. In fact, an increasing number of controlled clinical trials is evaluating the putative beneficial effects of: 1) direct epigenetic-oriented drugs, eg, apabetalone, and 2) repurposed drugs with a possible indirect epigenetic interference, eg, metformin, statins, sodium glucose transporter inhibitors 2 (SGLT2i), and omega 3 polyunsaturated fatty acids (PUFAs) in both HFrEF and HFpEF, separately. Apabetalone is the first and unique direct epidrug tested in cardiovascular patients to date, and the BETonMACE trial has reported a reduction in first HF hospitalization (any EF value) and cardiovascular death in patients with type 2 diabetes and recent acute coronary syndrome, suggesting a possible role in secondary prevention. Patients with HFpEF seem to benefit from supplementation to the standard therapy with statins, metformin, and SGLT2i owing to their ability in reducing mortality. In contrast, the vasodilator hydralazine, with or without isosorbide dinitrate, did not provide beneficial effects. In HFrEF, metformin and SGLT2i could reduce the risk of incident HF and mortality in affected patients whereas clinical trials based on statins provided mixed results. Furthermore, PUFAs diet supplementation was significantly associated with reduced cardiovascular risk in both HFpEF and HFrEF. Future large trials will reveal whether direct and indirect epitherapy will remain a work in progress or become a useful way to customize the therapy in the real-world management of HFpEF and HFrEF. Our goal is to discuss the recent advancement in the epitherapy as a possible way to improve personalized therapy of HF

    Multidimensional natal isotopic niches refect migratory patterns in birds

    Get PDF
    7openInternationalBothNaturally occurring stable isotope ratios in animal tissues allow estimation of species trophic position and ecological niche. Measuring multiple isotopes of migratory species along flyway bottlenecks offers the opportunity to sample multiple populations and species whose tissues carry information at continental scales. We measured δ2H, δ18O, δ13C, δ15N in juvenile feathers of 21 bird species captured at a migratory bottleneck in the Italian Alps. We examined if trends in individual isotopes reflected known migratory strategies and whether dietary (δ13C–δ15N) and spatially-explicit breeding origin (δ2H–δ18O) niche breadth (NB) differed among long-distance trans-Saharan (TS), short-distance (IP) and irruptive (IR) intra-Palearctic migrants, and whether they correlated with reported populations long-term trends. In both TS and IP groups, species δ2H declined with capture date, indicating that northern populations reached the stopover site later in the season, following a Type-I migration strategy. Values of δ2H indicated that breeding range of TS migrants extended farther north than IP and IR migrants. The breeding season was longer for IP migrants whose δ13C and δ15N values declined and increased, respectively, with time of capture. Average species dietary NB did not differ among migratory groups, but TS migrants displayed wider breeding origin niches, suggesting that long-distant migration is linked to broader ecological niches. Isotope origin NB well reflected species geographic range extent, while dietary NB did not correlate with literature accounts of species’ diet. We found no relationship between species breeding NB and population trends in Europe, suggesting that conditions in the breeding grounds, as inferred by stable isotopes, are not the only determinant of species’ long-term persistence. We demonstrate that ringing activities and isotopic measurements of passerines migrating through a bottleneck represents a unique opportunity to investigate large-scale life-history phenomena relevant to conservation.openFranzoi, A.; Larsen, S.; Franceschi, P.; Hobson, K. A.; Pedrini, P.; Camin, F.; Bontempo, L.Franzoi, A.; Larsen, S.; Franceschi, P.; Hobson, K.A.; Pedrini, P.; Camin, F.; Bontempo, L

    Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

    Get PDF
    Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a highcontent of free and glycosylated monoterpenoids, which gives very aromatic wines. Thearomatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes. Except the quali-quantitative analysis, no investigations regarding the isotopic values of the target volatile compounds are documented in literature. Stable isotope ratio analysis represents a modern and powerful tool used by the laboratories responsible for official consumer protection, for the food quality and genuineness assessment. In this study, samples of Moscato Giallo were collected during the harvest season in 2019 from two Italian regions:Trentino – Alto Adige and Veneto, known lands for the cultivation of this aromatic variety. The flavor compounds were extracted from grapes and wines, after alcoholic fermentation of grape juice, and analysed by GC-MS/MS. The results confirmed the presence of typical terpenoids both in free and glycosylated form, responsible for the characteristic aroma of Moscato Giallo variety. The aromatic compounds were also analysed by GC-C\Py-IRMS for a preliminary investigation. The compound-specific isotope ratio analysis allowed to determine the carbon (δ13C) and hydrogen (δ2H) isotopic signatures of the major volatile compounds for the first time
    • …
    corecore