366 research outputs found

    Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

    Get PDF
    The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2O(k)O(n)2^{O(k)} O(n). We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. At the same time, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (SODA '95 / JGAA '99)

    A characterization of extremal graphs without matching-cuts

    Get PDF
    A graph is called (matching-)immune if it has no edge cut that is also a matching. Farley and Proskurowski proved that for all immune graphs G=(V,E)G=(V,E), ∣E∣≥⌈3(∣V∣−1)/2⌉|E|\geq \lceil 3(|V|-1)/2\rceil, and constructed a large class of immune graphs attaining this lower bound for every value of ∣V(G)∣|V(G)|, called ABC graphs. In this paper, we prove their conjecture that every immune graph that attains this lower bound is an ABC graph

    Rerouting shortest paths in planar graphs

    Get PDF
    A rerouting sequence is a sequence of shortest st-paths such that consecutive paths differ in one vertex. We study the the Shortest Path Rerouting Problem, which asks, given two shortest st-paths P and Q in a graph G, whether a rerouting sequence exists from P to Q. This problem is PSPACE-hard in general, but we show that it can be solved in polynomial time if G is planar. To this end, we introduce a dynamic programming method for reconfiguration problems.Comment: submitte

    Max-Leaves Spanning Tree is APX-hard for Cubic Graphs

    Full text link
    We consider the problem of finding a spanning tree with maximum number of leaves (MaxLeaf). A 2-approximation algorithm is known for this problem, and a 3/2-approximation algorithm when restricted to graphs where every vertex has degree 3 (cubic graphs). MaxLeaf is known to be APX-hard in general, and NP-hard for cubic graphs. We show that the problem is also APX-hard for cubic graphs. The APX-hardness of the related problem Minimum Connected Dominating Set for cubic graphs follows

    The Complexity of Rerouting Shortest Paths

    Get PDF
    The Shortest Path Reconfiguration problem has as input a graph G (with unit edge lengths) with vertices s and t, and two shortest st-paths P and Q. The question is whether there exists a sequence of shortest st-paths that starts with P and ends with Q, such that subsequent paths differ in only one vertex. This is called a rerouting sequence. This problem is shown to be PSPACE-complete. For claw-free graphs and chordal graphs, it is shown that the problem can be solved in polynomial time, and that shortest rerouting sequences have linear length. For these classes, it is also shown that deciding whether a rerouting sequence exists between all pairs of shortest st-paths can be done in polynomial time. Finally, a polynomial time algorithm for counting the number of isolated paths is given.Comment: The results on claw-free graphs, chordal graphs and isolated paths have been added in version 2 (april 2012). Version 1 (September 2010) only contained the PSPACE-hardness result. (Version 2 has been submitted.

    Spanning trees with many leaves: new extremal results and an improved FPT algorithm

    Get PDF
    We present two lower bounds for the maximum number of leaves in a spanning tree of a graph. For connected graphs without triangles, with minimum degree at least three, we show that a spanning tree with at least (n+4)/3 leaves exists, where n is the number of vertices of the graph. For connected graphs with minimum degree at least three, that contain D diamonds induced by vertices of degree three (a diamond is a K4 minus one edge), we show that a spanning tree exists with at least (2n-D+12)/7 leaves. The proofs use the fact that spanning trees with many leaves correspond to small connected dominating sets. Both of these bounds are best possible for their respective graph classes. For both bounds simple polynomial time algorithms are given that find spanning trees satisfying the bounds. \ud \ud The second bound is used to find a new fastest FPT algorithm for the Max-Leaf Spanning Tree problem. This problem asks whether a graph G on n vertices has a spanning tree with at least k leaves. The time complexity of our algorithm is f(k)g(n), where g(n) is a polynomial, and f(k) ÃŽ O(8.12k).\ud \ud \u

    Spanning Trees with Many Leaves in Graphs without Diamonds and Blossoms

    Full text link
    It is known that graphs on n vertices with minimum degree at least 3 have spanning trees with at least n/4+2 leaves and that this can be improved to (n+4)/3 for cubic graphs without the diamond K_4-e as a subgraph. We generalize the second result by proving that every graph with minimum degree at least 3, without diamonds and certain subgraphs called blossoms, has a spanning tree with at least (n+4)/3 leaves, and generalize this further by allowing vertices of lower degree. We show that it is necessary to exclude blossoms in order to obtain a bound of the form n/3+c. We use the new bound to obtain a simple FPT algorithm, which decides in O(m)+O^*(6.75^k) time whether a graph of size m has a spanning tree with at least k leaves. This improves the best known time complexity for MAX LEAF SPANNING TREE.Comment: 25 pages, 27 Figure
    • …
    corecore