49 research outputs found

    Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies

    Centrality of Striatal Cholinergic Transmission in Basal Ganglia Function

    Get PDF
    Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction. Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson's disease and dystonia. Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders

    Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia

    Get PDF
    Summary: Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing in vivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia

    Impaired dopamine- and adenosine-mediated signaling and plasticity in a novel rodent model for DYT25 dystonia

    Get PDF
    Abstract Dystonia is a neurological movement disorder characterized by sustained or intermittent involuntary muscle contractions. Loss-of-function mutations in the GNAL gene have been identified to be the cause of "isolated" dystonia DYT25. The GNAL gene encodes for the guanine nucleotide-binding protein G(olf) subunit alpha (Gαolf), which is mainly expressed in the olfactory bulb and the striatum and functions as a modulator during neurotransmission coupling with D1R and A2AR. Previously, heterozygous Gαolf -deficient mice (Gnal+/−) have been generated and showed a mild phenotype at basal condition. In contrast, homozygous deletion of Gnal in mice (Gnal−/−) resulted in a significantly reduced survival rate. In this study, using the CRISPR-Cas9 system we generated and characterized heterozygous Gnal knockout rats (Gnal+/−) with a 13 base pair deletion in the first exon of the rat Gnal splicing variant 2, a major isoform in both human and rat striatum. Gnal+/− rats showed early-onset phenotypes associated with impaired dopamine transmission, including reduction in locomotor activity, deficits in rotarod performance and an abnormal motor skill learning ability. At cellular and molecular level, we found down-regulated Arc expression, increased cell surface distribution of AMPA receptors, and the loss of D2R-dependent corticostriatal long-term depression (LTD) in Gnal+/− rats. Based on the evidence that D2R activity is normally inhibited by adenosine A2ARs, co-localized on the same population of striatal neurons, we show that blockade of A2ARs restores physiological LTD. This animal model may be a valuable tool for investigating Gαolf function and finding a suitable treatment for dystonia associated with deficient dopamine transmission

    Lipidomics study of mesenchymal stromal cells derived from human placenta

    Get PDF
    The interest for lipid metabolism in the stem cell field has increased in the last few years (1,2,3). Membrane lipidomics embraces many aspects of cell metabolism and the role of lipids is now considered more than merely inert and structural in delimitating the extra- and intra-cellular compartments (4,5). Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. The aim of our work was to study membrane lipidomics of mesenchymal stromal cells derived from human placenta and correlate it to specific biological properties, by using chemically- defined tailored lipid supplements (Refeed®). In the experimental study, the cell membranes of freshly isolated mesenchymal stromal cells obtained from human fetal membranes (FM-MSCs) were characterized for fatty acid composition. Then, we investigated cell morphology, viability, proliferation, differentiation and immunomodulation after in-vitro exposure to Refeed® supplements. Control MSCs were cultured without lipid supplementation. Our results showed a significant reduction of membrane fluidity for in-vitro primary cells, with cell membrane fatty acid composition greatly differing from the in-vivo one. By tailoring lipid supplementation, the fatty acid composition and biophysical properties of in-vitro cell membranes resulted more similar to the in-vivo counterparts, with higher omega-6 fatty acid content and increased membrane fluidity. These modifications of membrane composition and properties had no effect on cell morphology and viability, whereas ameliorated cell proliferation rate, diffentiation ability and immunomodulatory properties. In particular, supplemented FMMSCs showed an increased expression of cell membrane molecules like Vascular Endothelial Growth Factor Receptors 1 (VEGFR-1 or Flt-1) and 2 (VEGFR-2 or KDR), that correlated with a more efficient response to angiogenic commitment. Moreover, regarding immunomodulation, supplemented FM-MSCs displayed an increased expression of the tolerogenic cell surface protein HLA-G, that positively influenced the in-vitro cell immunomodulatory ability. Finally, these data suggest that specific lipid supplementation have functional consequences on in-vitro MSC behavior and may influence cell-based therapeutic approaches

    Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission

    No full text
    Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments

    Coordinate high-frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons

    No full text
    Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium concentration ([Ca(2+)](i)), and the induction of synaptic plasticity was investigated in striatal cholinergic interneurons from a rat corticostriatal slice preparation by means of combined electrophysiological intracellular recordings and microfluorometric techniques. Different protocols of stimulation were considered, varying both the frequency and the duration of the train of stimuli. High-frequency stimulation (HFS) (three trains at 100 Hz for 3 sec, 20-sec interval) induced a rise in [Ca(2+)](i), exceeding by fivefold the resting level, and caused a LTP of synaptic transmission. Tetanic stimulation delivered at lower frequencies (5-30 Hz) failed to induce long-term changes of synaptic efficacy. The observed elevation in [Ca(2+)](i) during HFS was primarily mediated by L-type high-voltage activated (HVA)-Ca(2+) channels, as it was fully prevented by nifedipine. Conversely, blockade of NMDA and AMPA glutamate receptor did not affect either LTP or the magnitude of the [Ca(2+)](i) rise. Interestingly, the pharmacological analysis of the post-tetanic depolarizing postsynaptic potential (DPSP) revealed that LTP was attributable, to a large extent, to the potentiation of the GABA(A)-mediated component. In conclusion, the expression of LTP in striatal cholinergic interneurons is a selective response to a precise stimulation pattern of induction requiring a critical rise in [Ca(2+)](i)
    corecore