16 research outputs found

    Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils

    Get PDF
    Neutrophil migration to inflamed sites is crucial for both the initiation of inflammation and resolution of infection, yet these cells are involved in perpetuation of different chronic inflammatory diseases. Gastrin-releasing peptide (GRP) is a neuropeptide that acts through G protein coupled receptors (GPCRs) involved in signal transmission in both central and peripheral nervous systems. Its receptor, gastrin-releasing peptide receptor (GRPR), is expressed by various cell types, and it is overexpressed in cancer cells. RC-3095 is a selective GRPR antagonist, recently found to have antiinflammatory properties in arthritis and sepsis models. Here we demonstrate that i.p. injection of GRP attracts neutrophils in 4 h, and attraction is blocked by RC-3095. Macrophage depletion or neutralization of TNF abrogates GRP-induced neutrophil recruitment to the peritoneum. In vitro, GRP-induced neutrophil migration was dependent on PLC- β2, PI3K, ERK, p38 and independent of Gαi protein, and neutrophil migration toward synovial fluid of arthritis patients was inhibited by treatment with RC-3095.We propose that GRPR is an alternative chemotactic receptor that may play a role in the pathogenesis of inflammatory disorders

    Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype

    Get PDF
    Macrophages are myeloid cells that play an essential role in inflammation and host defense, regulating immune responses and maintaining tissue homeostasis. Depending on the microenvironment, macrophages can polarize to two distinct phenotypes. The M1 phenotype is activated by IFN-c and bacterial products, and displays an inflammatory profile, while M2 macrophages are activated by IL-4 and tend to be anti-inflammatory or immunosupressive. It was observed that DnaK from Mycobacterium tuberculosis has immunosuppressive properties, inducing a tolerogenic phenotype in dendritic cells and MDSCs, contributing to graft acceptance and tumor growth. However, its role in macrophage polarization remains to be elucidated. We asked whether DnaK was able to modulate macrophage phenotype. Murine macrophages, derived from bone marrow, or from the peritoneum, were incubated with DnaK and their phenotype compared to M1 or M2 polarized macrophages. Treatment with DnaK leads macrophages to present higher arginase I activity, IL-10 production and FIZZ1 and Ym1 expression. Furthermore, DnaK increased surface levels of CD206. Importantly, DnaK-treated macrophages were able to promote tumor growth in an allogeneic melanoma model. Our results suggest that DnaK polarizes macrophages to the M2-like phenotype and could constitute a virulence factor and is an important immunomodulator of macrophage responses
    corecore