28 research outputs found

    Nanocomposite Fe1xO=Fe3O4, Fe=Fe1xO thin films prepared by RF sputtering and revealed by magnetic coupling effects

    Get PDF
    Magnetic and semi-conducting nanocomposite iron oxide thin films have been prepared under bias polarization, by radio-frequency sputtering of a magnetite target. The nature of the phases obtained in the thin films depends on the bias power density. The increase in power density, from 0 to 110mW=cm2, allows the preparation of magnetite, magnetite/wustite and wustite/a-iron nanocomposites successively. Magnetic measurements at low temperature show exchange bias for two-phases films even though the minor phase is not detected by grazing angle X-ray diffraction. The exchange bias can reach very high values of about 4300 Oe. Electrical properties at room temperature are interpreted taking into account both the modifications of the film compactness, and the nature of the phases from which they are made

    Patterned ferrimagnetic thin films of spinel ferrites obtained directly by laser irradiation

    Get PDF
    Some spinel ferrites can be oxidized or transformed at moderate temperatures. Such modifications werecarried out on thin films of mixed cobalt copper ferrites and maghemite, by heating small regions with alow-power laser spot applied for about 100 ns. The very simple laser heating process, which can be donedirectly with a conventional photolithographic machine, made it possible to generate two-dimensionalmagnetization heterogeneities in ferrimagnetic films. Such periodic structures could display the specificproperties of magneto-photonic or magnonic crystals

    Magnetic and semi-conducting nano-composite films of spinel ferrite and cubic zinc oxide

    Get PDF
    Magnetic and semi-conducting nano-composite films have been prepared under bias polarization, by radio-frequency sputtering of a pure zinc ferrite target. These composite thin films are made of cubic Zn1 − yFeyO monoxide islands inside a spinel ferrite matrix. The relative proportion of each phase depends on the substrate polarization (i.e. bias power). When no bias is applied the films solely display the diffraction pattern of a spinel phase even if some islands inside the film can be observed by electron microscopy. When the bias power is increased, the spinel phase disappears progressively as enhanced formation of islands takes place in such a manner that the cubic Zn1 − yFeyO monoxide is solely revealed by X-ray diffraction for a bias power higher than 5 W. From bibliographical data and calculated phase diagrams, it can be inferred that these phases would require very low oxygen partial pressure, high temperature and mechanical pressure, to be obtained simultaneously by a conventional ceramic process. This underlines the strong potential of radio-frequency sputtering of oxide targets to prepare original oxides or composite materials

    Nanocomposites of metallic copper and spinel ferrite films: Growth and self-assembly of copper particles

    Get PDF
    Nanocomposites of metallic copper and iron oxides films have been prepared by RF-sputtering of pure CuFeO2 delafossite target. The films are made of copper and spinel ferrite crystallites of less than 10 nm in diameter. The content of metallic copper and the ferrite composition depend on the sputtering conditions. For the shortest substrate-target distances, films are made of copper and copper substituted magnetite with low copper content. The formation of the metallic and spinel phases is due to the loss of a small quantity of oxygen during sputtering. When annealed under inert atmosphere, nanometric copper particles located in the upper part of the film, move on the surface and grow due to coalescence phenomena. The particle motion can be stopped by small grooves allowing the self-assembly of copper particles

    Mössbauer characterisations and magnetic properties of iron cobaltites CoxFe3−xO4 (1 ≤ x ≤ 2.46) before and after spinodal decomposition

    Get PDF
    Iron cobaltite powders CoxFe3_xO4 (1 ≤ x ≤ 2.46) were synthesized with compositions in between the cobalt errite CoFe2 O4 and Co2.46Fe0.54O4. The cationic distribution of pure spinel phases was determined by Mossbauer spectroscopy: as Co content increases in the spinel oxide, Co3+ cations replace Fe3+ cations in the octahedral sites and Co2+ cations migrate from octahedral to tetrahedral sites. Saturation magnetizations MS measured at 5 K by a SQUID magnetometer were consistent with the values calculated from the cationic distribution. MS decreases as diamagnetic Co3+ cations replace strongly magnetic Fe3+ cations. Two spinel phases were formed by spinodal decomposition of Co1.73Fe1.27O4 phase submitted to a subsequent thermal treatment, one with a high amount of iron Co1.16Fe1.84O4 and one other containing mostly cobalt Co2.69Fe0.31O4. Increase of the experimental MS value obtained after the spinodal decomposition is in accordance with the calculated value deduced from the cationic distribution of the two phases

    Developing new joining materials for low-temperature electronics assembly

    Get PDF
    International audienceThe present work focuses on a new kind of lead-free joining method for surface-mount technology based on precursor chemistry. The interest of metal oxalates as new soldering materials for die attachment (1st level packaging) was previously demonstrated with silver oxalate. The thermal decomposition of metal oxalates under controlled atmosphere can be used to produce small metal particles below their melting point. These particles are found to be in a highly active particulate form. First experimental studies are focusing on several metal oxalates (tin oxalate and bismuth oxalate) to assess their suitability for low-temperature metal particle production. The main work is dealing with controlled chemical precipitation synthesis and characterization of the compounds as well as study of the properties of decomposition solid products (powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and thermal analyses under different atmospheres)

    Thin films of Co1.7Fe1.3O4 prepared by radio frequency sputtering - the first step towards their spinodal decomposition

    Get PDF
    Pure thin films of Co1.7Fe1.3O4 spinel iron cobaltites were prepared for the first time by radio frequency sputtering. Such films are made of small crystallites of about 20 to 30 nm in diameter. Because Co1.7Fe1.3O4 films have a composition located in the miscibility gap of Fe3O4–Co3O4, they can be submitted to spinodal transformation below about 900 °C. This transformation was also confirmed at 600 °C by X-ray diffraction and transmission electron microscopy studies. It was demonstrated however that this spinodal transformation occurs after only a few hours at low temperature. Indeed, after annealing in air at 300 to 450 °C for a few hours, the spinodal transformation leading to two-phase spinels, one rich in iron and the other rich in cobalt, was clearly revealed by Raman spectroscopy and electrical measurements

    Preparation of iron cobaltite thin films by RF magnetron sputtering

    Get PDF
    Iron cobaltite thin films with spinel structure have been elaborated by radio-frequency (RF) magnetron sputtering from a Co1.75Fe1.25O4 target. Influence of argon pressure on structure, microstructure and physical properties of films has been examined. Iron–cobalt oxide thin films essentially consist of one spinel phase when deposited at low pressure (0.5 and 1.0 Pa). At high pressure (2.0 Pa), the global stoichiometry of the film is changed which results in the precipitation of a mixed monoxide of cobalt and iron beside the spinel phase. This in-situ reduction due to an oxygen loss occurring mainly at high deposition pressure has been revealed by X-ray diffraction and Raman spectroscopy. Microstructural evolution of thin film with argon pressure has been shown by microscopic observations (AFM and SEM). The evolution of magnetic and electrical properties, versus argon pressure, has been also studied by SQUID and 4 point probe measurements

    Study on the effect of cuprite content on the electrical and CO2 sensing properties of cuprite-copper ferrite nanopowder composites

    Get PDF
    The paper reports the synthesis and characterization of cuprite/copper ferrite nanopowder composites. The composites were synthesized using co-precipitation with oxalates precursor route. The phase and microstructure of the powder samples were characterized using X-ray diffraction, BET surface area analyzer and scanning electron microscopy. The powders were fabricated to device using a simple and efficient shaping technique. These devices were used further to carry out electrical property measurements in various atmospheres. The type of charge carriers were found by noting the sense of change in resistance when the air atmosphere on the sample was replaced with argon. CO2 responses were reported for the whole series of composites. The effect of cuprite concentration on the CO2 sensing performance was found to be independent of cuprite concentration up to certain limits (70%at)

    Matériaux innovants sans plomb pour l'assemblage de composants électroniques à basse température

    Get PDF
    Dans le cadre du développement de nouveaux matériaux d’assemblage sans plomb, les premiers résultats de synthèse et de caractérisations physicochimiques d’oxalate de bismuth sont présentés. Par une méthode de décomposition thermique de précurseurs métal-organiques, la possibilité de produire des particules métalliques en dessous de la température de fusion du bismuth massif (271°C) est discutée ici. L’étude du comportement en température de l’oxalate de bismuth montre l’influence de l’atmosphère (air ou azote) sur la nature des produits de décomposition (oxyde ou métal). Sous une atmosphère inerte contrôlée, les échantillons d’oxalate préparés se décomposent en bismuth métallique entre 210 et 250°C
    corecore