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a  b  s  t  r  a c t

Some spinel ferrites can  be oxidized  or  transformed  at  moderate temperatures.  Such  modifications  were
carried  out  on thin  films  of  mixed cobalt copper  ferrites and  maghemite,  by  heating small  regions  with  a
lowpower  laser  spot  applied  for  about  100 ns. The very simple  laser  heating process,  which  can be done
directly  with  a conventional  photolithographic  machine, made it  possible  to generate twodimensional
magnetization  heterogeneities  in  ferrimagnetic  films. Such  periodic  structures could  display the  specific
properties  of magnetophotonic  or  magnonic crystals.

1.  Introduction

From the pioneering works of Yablonovitchh [1] and John [2]
optical periodic structures, called photonic crystals, have attracted
much attention, not only because of their fundamental interest,
but also because of their potential technological applications due
to their original collective properties [3]. Making such periodic
structures with ferro or ferrimagnetic materials, is also very attrac
tive for several reasons. Firstly, optical indices can be tailored by
an external magnetic field in such structures, due to the mag
netic birefringence and dichroic properties of the core material.
Tunable optical devices, which can  be called “magnetophotonic
crystals”, can thus be imagined [4,5]. The second reason is that
twodimensional magnetization heterogeneities in  a ferro or  ferri
magnetic material, can  lead to a structure able to  manage spin wave
propagation. These magnetic counterparts of photonic crystals are
generally called “magnonic crystals”[6–8]. The twodimensional
magnetization heterogeneities can be holes or a second material,
having different magnetic properties than the matrix inside which
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it is inserted. Such magnonic devices could find  technological appli
cations in narrowband optical or microwave filters or  high speed
switches [9].

2D  periodic structuration of magnetic films, has already been
performed to make magnonic crystals. However, the  materials
used were single garnet films or magnetic alloys and the method
carried out resorted to quite heavy optical or electron lithogra
phy processing [9–12]. This paper proposes a  very simple laser
processing of spinel ferrite films, with the aim to fabricate new  mag
netic devices, for instance magnetophotonic or magnonic crystals.
Laser beams or spots have already been used to anneal [13–16],
sinter [17] or pattern [18–24] a  lot of oxides, notably spinel oxides
[25,26]. Of course, spinel ferrites were chosen for this work, because
of their ferrimagnetic properties, which can be easily adjusted by
proper cationic substitutions. But  the other reason, which is the
key to successful patterning with lowpower laser spots, is  that
spinel ferrite thin films can  often display a real “thermal reactivity”
at moderate temperatures. “Thermal reactivity” means reactivity
towards oxygen for spinel containing cations capable of higher
valence states [27], or metastability for strongly nonstoichiometric
ferrites [28,29] or  quite low  sintering temperatures, mainly for
copper substituted ferrites [30,31]. Such thermal sensitivities are
already used for optical data storage [32–34].

This paper will mainly focus on thin films of mixed cobalt copper
ferrites, because of their high sensitivity to laser irradiation. It will
also give another example with laser patterned gFe2O3 thin films.



2. Experimental

2.1. Sample preparation

Thin  films of  spinel ferrites were prepared by  radiofrequency
sputtering of  10 cm  diameter oxide  targets. For mixed cobalt copper
ferrites, an oxide target having Co:Cu:Fe cations in the proportions
0.15:0.85:2 was used.  The second target was made of magnetite
Fe3O4.  The sputtering machine was an Alcatel A450 equipped
with a radiofrequencygenerator (13.56 MHz) device as well as  a
pumping system (a mechanical pump coupled with a  turbo molec
ular pump) which reaches residual pressures down to 10−5 Pa, a  gas
flow controller, a water cooled target holder and two water cooled
sample holders. The films were deposited on glass substrates with
an average arithmetic roughness lower than 0.5 nm.

Conventionally, a residual vacuum of 5  × 10−5 Pa was reached
in the sputtering chamber before introducing the argon depo
sition gas. In  order to obtain various microstructures for
Co0.15Cu0.85Fe2O4, targetsubstrate distances of  5  and 8  cm and
argon pressures of  0.5 and 2 Pa, were used. Moreover, for each
experimental condition, the targets were sputtered for 20  min
before starting film deposition on  the glass substrate. The sput
tering power was maintained at about 3 W cm−2 for each of the
sputtering conditions used.

Below, the mixed cobalt copper ferrite samples are named
“Pxdy” with x the value of argon pressure in Pascal, and y the sample
target distance in centimetres.

Magnetite  films were obtained by magnetite target sputtering
P0.5d5 conditions. These samples were oxidized at 300 ◦C for 2  h in
order to form gFe2O3 metastable phase.

2.2. Laser patterning

Most  of the patterning experiments were done  using a DWL 200
machine from Heidelberg Instruments MikroTechnik. This machine
is generally dedicated to mask manufacture for optical  lithogra
phy. It is a high precision tool using pixel generation technology
by He–Cd laser scanning (� =  442 nm,  maximal power 125 mW).
The writing speed was about 1 mm2/s or 10 M  pixels/s. The aver
age duration of laser insolation for each pixel, is  close to 100 ns  and
the maximal light energy is  7.8  J/cm2.  The optical system is made of
an Autofocus, which has a pneumatic servocontrol to correct the
flatness defects. The tuning range of the  Autofocus is 70 mm and its
z resolution is  100 nm.  The working distance between the sample
and the objective lens was  100 mm.

Other experiments were carried out  with a machine designed
for the production of masters for optical disc manufacturing. The
476 nm wavelength of an Ar  laser was focused by  an objective lens
with a  numerical aperture of 0.8, flying over the sample at a  dis
tance close to 1 mm.  The writing time for each pixel was  close to
100 ns and the maximal light power at the  sample surface was
about 20 mW.

2.3. Characterization techniques

2.3.1. Xray diffraction

Structural characterizations of films were performed by grazing
angle Xray diffraction (  ̨ = 1◦)  on a Siemens D  5000 diffrac
tometer equipped with a Brucker solX detector. The Xray
wavelength was  that of the copper Ka ray (Ka1 =  0.15405 nm and
Ka2 = 0.15443 nm).

2.3.2.  Raman spectroscopy

Raman  spectra were collected under ambient conditions using a
Horiba Scientific Raman microscope fitted with a  laser wavelength
of 532 nm and a  100× objective lens. During the measurement, the

resulting  laser power at the surface of the sample was  adjusted to
1.1 mW.  The final spectrum is the average of three 300 s  accumula
tions. Examination of multiple spots showed that the samples were
homogeneous.

2.3.3. Magnetic measurement

The  magnetic properties were measured in the plane of the
films, with a SQUID magnetometer MPMSXL 7  from Quantum
design. The maximal applied field for the measurements was
70 k  Oe.  The magnetizations of  the samples were corrected for sub
strate contribution.

2.3.4. Thickness measurement and  microscopy

Film thicknesses were measured using a  Dektak 3030ST pro
filometer. Atomic force microscopy (AFM) was  carried out with a
Veeco Dimension 3000 atomic force microscope, equipped with
a super sharp TESPSS AppNano© tip (nominal resonance fre
quency 320 kHz, nominal radius of curvature 2 nm).  Magnetic Force
Microscopy (MFM)  observations were also performed with the
same apparatus using magnetized tips (Co/Cr coating, nominal res
onance frequency 70 kHz). AFM was  used to reveal the heated areas
of the films, where changes in volume occurred due to  stress relax
ation, oxidation or crystallization. MFM  is  not  really appropriated to
study such strong topographic deformations in  ferrimagnetic films.
Indeed, the magnetic contrast is generally low and the topographic
signal due to a high bump or a deep hollow, is difficult to  remove
totally from the  magnetic signal. However, MFM  is very powerful to
reveal changes in local magnetic properties when there is no topo
graphical modification. MFM  was  then  used only to reveal local
maghemite–hematite transformations, which can  occur without
topographical change and which involve the formation of antifer
romagnetic zones in ferrimagnetic ferrite films.

The microstructure of the  samples was also investigated by
scanning electron microscopy with a  JEOL JSM 6700F appara
tus. The proportion of cations was determined by EDX (Princeton
Gamma  Tech). Some patterns were also observed with a Keyence
VHX600 digital optical microscope using a VHZ100R or  VHZ500R
objective system, having both a high resolution and a  large depth
of field.

3.  Results and  discussion

3.1.  Mixed cobalt copper spinel ferrites

The ferrite thin films  prepared were poorly crystallized but they
displayed the main Xray diffraction (Fig. 1) and Raman peaks
(Fig. 2)  of the spinel structure. Moreover they were ferromagnetic
at room  temperature as  revealed by their M  = f(H) hysteresis curves
(Fig. 3). EDX  analyses also  showed that the metal chemical compo
sition was  0.15Co:0.85Cu:2Fe, the same as that of the target. The
thin films were then made of a Co0.15Cu0.85Fe2 O4 spinel ferrite. The
samples prepared at 0.5 Pa argon pressure and 5 cm from the target
(samples P0.5d5), had Xray diffraction peaks shifted towards the
small angles compared to the peak positions for a powder having
the same composition. An inplane compressive stress, making the
reticular distances larger in  a  direction close to the perpendicular
of the film surface, was assumed to be responsible for this shift.
By contrast, the P2d8 samples were submitted to a  slight tensile
stress (Fig. 1 and Table 1). Atomic force microscopy clearly shows
the polycrystalline structure of the films (Fig. 4), which were made
of small crystallites of about 25 nm and 40 nm for 100 nm and 1  mm
thick samples respectively. The samples prepared at a high argon
pressure (P2d8) displayed crystallites aggregated in larger grains
separated by  porosity. This porosity clearly appeared for P2d8,
mainly for 1 mm thick films (Fig. 4).
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Fig. 1. Xray diffraction patterns of asdeposited CuCo thin  films (1 mm thick) for
two experimental conditions: argon pressure 2 Pa and targetsubstrate distance
8  cm (P2d8); argon pressure 0.5 Pa and targetsubstrate distance 5 cm  (P05d5).

Fig. 2. Raman spectra of asdeposited CuCo thin films (thickness: 1 mm) for  exper
imental  conditions P2d8 and P05d5.

Fig. 3. M  = f(H) hysteresis curve at  room temperature for 1 mm thick samples
of  mixed cobalt copper ferrite films, prepared in different conditions: (a) argon
pressure:  2  Pa, targetsubstrate distance: 8 cm,  (b)  argon pressure: 0.5 Pa, target
substrate  distance: 5  cm.

Preliminary experiments of laser irradiation were carried out  on
asdeposited films, having a thickness of 70 nm. The laser spot of the
mastering machine (� = 476 nm)  was used for these experiments.
Two different behaviours were observed. For the  films prepared at
low argon pressure, the laser irradiation created bumps, whereas
craterlike shaped holes appeared for films obtained at high pres
sure (Fig. 5). The patterns written were very regular in  size and
shape for all samples. Their  size, however, increased a little bit with
the laser power due to the Gaussian profile of the energy of the
spot. For instance, the bumps displayed an overall diameter close
to 0.3 mm and a height of 10 nm for 5  mW,  but  these values became
0.6 mm and 30 nm,  for a  power of 15 mW.

Some experiments were carried out to try to understand the
phenomena related to pattern formation. At first, thin  films  were
heated at 450 ◦C in  air (AA samples) or in pure nitrogen (NA sam
ples). It was observed that for AA ferrite layers, it was  not possible
to get a  pattern with a  moderate laser power (5–15 mW). For NA
samples, films can be written on, using a slightly higher laser power
than for asdeposited ferrites. Pattern formation could then  be
related to an oxidation phenomenon induced by  laser heating.

Table 1

Modifications of the outofplane reticular distances due to internal stress in ferrite
films.

Sample (3  1 1) Reticular distance (nm)

Co0.15Cu0.85Fe2O4 powder 0.25274
P0.5d5  thin film 0.25539
P2d8  thin film 0.25267



Fig. 4. AFM image (1 × 1 micrometers) of the surface of 100 nm and 1 mm thick films,
prepared  in different conditions: (a) argon pressure: 2 Pa, targetsubstrate distance:
8 cm, (b) argon pressure: 0.5 Pa, targetsubstrate distance: 5 cm.

Some spinel oxides, mainly ferrites containing copper, have a
low excess of  cations (i.e.  metallic cations/oxygen anions >3/4).
They can be  described by a  general formula such as: MxFe3−xO4−ı

(ı > 0, M: metallic cations). For such ferrites, nonstoichiometry
occurs due to excess of low  valence state cations, which are located
in oxygen interstices, normally free of cations in  the spinel struc
ture. “Interstitial” cuprous ions were already revealed in copper
[35,36] or mixed cobalt copper ferrites [37]. The films studied prob
ably display such nonstoichiometry, making cuprous cations the
only oxidizable ions, due  to the high stability of the other Cu2+, Co2+

and Fe3+ cationic species. The oxidation could then be written:

Co0,15Cu0,85Fe2O4−ı + ı/2 O2 →  Co0.15Cu0,85Fe2O4 (1)

Reaction (1), which is  induced by  the heating effect of the laser
irradiation, can occur more or less readily according to the film  crys
tallite size. For asdeposited films, reactivity towards oxygen was
high because of low valence state copper ions  and small crystal
lite size. Patterns could then be formed at low  laser power. When
annealed at  450 ◦C in inert  gas, cuprous ions remained but their
oxidation was more difficult because of larger crystallite size, i.e.
because of the lower area of  material in  contact with the air. Pat
terns formation required higher laser power. Of course, sample

Fig. 6. AFM image (phase mode) showing the increase in crystallite size in the
laser  heated zones (cobalt copper ferrite film, thickness 70 nm, P0.5d5). Image size
600 nm × 600 nm.

annealing in air at  450 ◦C, was responsible for cuprous ions oxi
dation, making it impossible to  write patterns with moderate laser
power.

Although oxidation seems to play a fundamental role in the for
mation of the patterns, it cannot explain why  ferrite films  react
to the laser irradiation, to give either bumps or holes. Maybe,
however, the heat brought by the laser, added to a small heating
effect due to the exothermic oxidation, brings enough energy to
modify the local microstructure leading to the growth and the sin
tering of the  crystallites. This effect can  be  especially pronounced
for copper ferrites, which can be sintered at  quite low tempera
tures [30,31]. The change in  crystallite size was  revealed by AFM
imaging, for the  bumps formed in P0.5d5 samples (Fig. 6). The
microstructural change goes also with topographical modification
due to the mechanical stress developed during the growth of the
films. For films P0.5d5 submitted to a compressive stress in their
plane, the microstructural change goes with the formation of a
bump. By contrast, tensile stress leads to “holes” with craterlike
shapes in  P2d8 layers.

Fig. 5. Patterning of films prepared in different conditions: (a) argon pressure: 0.5 Pa, targetsubstrate distance: 5 cm  (AFM Image 10  mm × 10 mm); (b) argon pressure: 2 Pa,
targetsubstrate distance: 8 cm (AFM Image 7  mm × 7 mm).



Fig. 7. AFM images showing the raised (bright) and hollow (dark) zones  for P0.5d5 (a) and P2d8, respectively. The  thickness of the films is 1  mm.  The image size is
10  mm × 10  mm.

Fig. 8. (a) SEM image of  laser patterned P2d8 film (thickness: 1  mm);  (b–d) details of  asdeposited and patterned zones.

Very similar results were obtained for thicker samples irradi
ated by the 442 nm laser spot of the conventional photolithography
machine. For 1  mm thick samples, hollow zones can be observed for
P2d8 films and raised zones for P0.5d5 films (Fig. 7). As previously
shown, the laser spot involves crystallite growth and sintering. In
the  P2d8 hollow zones, the crystallites were a  little bit  larger than
those in  the asdeposited regions (Fig. 8). Moreover, the  rough
ness was decreased and the  porosity deleted in these laser treated
zones. In the P0.5d5 raised zones, the crystallite sizes were also
increased. Unlike the  P2d8 samples, which were submitted to
different internal stresses, laser heating did lead however to an
increase in roughness. The roughness was mainly due to  grooves
resulting from the scan of the laser spot, as clearly revealed by AFM
images (Fig. 7a).

Spinel  ferrites with periodic patterns engraved inside, can  then
be obtained by direct laser processing. Because of the versatility
of this process, periodic structures very similar to those used for
magnonic crystals made of garnets [9], can be directly patterned
in P2d8 spinel ferrites. It will be interesting to study the potential
magnetophotonic or  magnonic effects of such structured ferrimag
netic spinel oxides in  the  near future.

It is also important to show that with the conventional pho
tolithography machine used, it is  possible to write very small

Fig. 9. Submicronic patterns in P2d8 film (thickness of the film: 1 mm)
(10  mm ×  10  mm  AFM image).



Fig. 10. AFM image (a) and the corresponding MFM image (b) of a  gFe2O3 film locally transformed into  aFe2O3 by laser heating (size of the images: 8 mm  × 8 mm).

patterns in  films of cobalt copper spinel ferrites. For instance, sub
micronic patterns were obtained in P2d8 films (Fig. 9). That makes
the preparation of miniaturized structures possible.

3.2.  Maghemite films

The  maghemite (gFe2O3) is a metastable spinel phase obtained
by oxidation of magnetite (Fe3O4). It  can  be  transformed into the
thermodynamically stable aFe2O3,  which has the  corundum struc
ture. This transformation, which occurs at a  moderate temperature
(#300–600 ◦C) varying mainly with crystallite size and mechanical
stress [29], can be  achieved not only for fine powders but also for
thin films of  maghemite.

Some  writing experiments were done with the  476 nm laser
spot on 25 nm thick maghemite films obtained by oxidation at
300 ◦C of magnetite samples. For laser power in  between 7.5 and
10 mW,  no topographical modifications were revealed. Careful
MFM observations showed, however, magnetic contrasts repro
ducing the patterns programmed on the laser machine (Fig. 10).
The magnetic contrasts came from the local transformations of the
ferrimagnetic gFe2O3 film,  which interacted with the magnetized
tip of the microscope, into  antiferromagnetic aFe2O3 zones, for
which the magnetic interactions with the tip were lower.

The  metastability of  some spinel ferrite thin films, thus offers
another possibility to create periodic structures by a very sim
ple and direct laser irradiation process. The periodic “magnetic
heterogeneities” created inside the ferromagnetic film could,
also generate the specific properties of  a magnetophotonic or
magnonic crystal.

4.  Conclusion

Thin films of mixed cobalt copper spinel ferrites and maghemite
displayed thermal reactivity, which makes their patterning pos
sible by a  lowpower laser spot. By controlling the elaboration
parameters or the ferrite composition, holes, bumps or local
phase changes can be created inside spinel ferrite films, by
this very simple laserbased process. Ferrimagnetic films with
twodimensional periodic heterogeneities of magnetization, can
then be prepared. Such films meet the basic requirements of
magnonic or magnetophotonic crystals. Moreover, due  to the
huge possibilities of composition and nonstoichiometry, offered
by the spinel ferrite family, patterned periodic structures could
be made using a  simple process, with ferrites having the relevant
properties to make effective magnetophotonic or magnonic crys
tals.

Acknowledgements

This  work was  supported by the  RENATECH technological plat
form from Institut Carnot LAASCNRS, member of the RTB network.
The authors particularly thank Dr. Pierre Franç ois  Calmon.
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