10 research outputs found

    SARS among Critical Care Nurses, Toronto

    Get PDF
    To determine factors that predispose or protect healthcare workers from severe acute respiratory syndrome (SARS), we conducted a retrospective cohort study among 43 nurses who worked in two Toronto critical care units with SARS patients. Eight of 32 nurses who entered a SARS patient’s room were infected. The probability of SARS infection was 6% per shift worked. Assisting during intubation, suctioning before intubation, and manipulating the oxygen mask were high-risk activities. Consistently wearing a mask (either surgical or particulate respirator type N95) while caring for a SARS patient was protective for the nurses, and consistent use of the N95 mask was more protective than not wearing a mask. Risk was reduced by consistent use of a surgical mask, but not significantly. Risk was lower with consistent use of a N95 mask than with consistent use of a surgical mask. We conclude that activities related to intubation increase SARS risk and use of a mask (particularly a N95 mask) is protective

    Risk Factors for SARS Transmission from Patients Requiring Intubation: A Multicentre Investigation in Toronto, Canada

    Get PDF
    In the 2003 Toronto SARS outbreak, SARS-CoV was transmitted in hospitals despite adherence to infection control procedures. Considerable controversy resulted regarding which procedures and behaviours were associated with the greatest risk of SARS-CoV transmission.A retrospective cohort study was conducted to identify risk factors for transmission of SARS-CoV during intubation from laboratory confirmed SARS patients to HCWs involved in their care. All SARS patients requiring intubation during the Toronto outbreak were identified. All HCWs who provided care to intubated SARS patients during treatment or transportation and who entered a patient room or had direct patient contact from 24 hours before to 4 hours after intubation were eligible for this study. Data was collected on patients by chart review and on HCWs by interviewer-administered questionnaire. Generalized estimating equation (GEE) logistic regression models and classification and regression trees (CART) were used to identify risk factors for SARS transmission. ratio ≤59 (OR = 8.65, p = .001) were associated with increased risk of transmission of SARS-CoV. In CART analyses, the four covariates which explained the greatest amount of variation in SARS-CoV transmission were covariates representing individual patients.Close contact with the airway of severely ill patients and failure of infection control practices to prevent exposure to respiratory secretions were associated with transmission of SARS-CoV. Rates of transmission of SARS-CoV varied widely among patients

    The 2008 Federal Intervention to Stabilize Fannie Mae and Freddie Mac

    Full text link
    Fannie Mae and Freddie Mac are government-sponsored enterprises that play a central role in U.S. residential mortgage markets. In recent years, policymakers became increasingly concerned about the size and risk-taking incentives of these two institutions. In September 2008, the federal government intervened to stabilize Fannie Mae and Freddie Mac in an effort to ensure the reliability of residential mortgage finance in the wake of the subprime mortgage crisis. This paper describes the sources of financial distress at Fannie Mae and Freddie Mac, outlines the measures taken by the federal government, and presents some evidence about the effectiveness of these actions. Looking ahead, policymakers will need to consider the future of Fannie Mae and Freddie Mac as well as the appropriate scope of public sector activities in primary and secondary mortgage markets

    Contact among healthcare workers in the hospital setting: developing the evidence base for innovative approaches to infection control

    Get PDF
    Background: Nosocomial, or healthcare-associated infections (HAI), exact a high medical and financial toll on patients, healthcare workers, caretakers, and the health system. Interpersonal contact patterns play a large role in infectious disease spread, but little is known about the relationship between health care workers’ (HCW) movements and contact patterns within a heath care facility and HAI. Quantitatively capturing these patterns will aid in understanding the dynamics of HAI and may lead to more targeted and effective control strategies in the hospital setting. Methods: Staff at 3 urban university-based tertiary care hospitals in Canada completed a detailed questionnaire on demographics, interpersonal contacts, in-hospital movement, and infection prevention and control practices. Staff were divided into categories of administrative/support, nurses, physicians, and “Other HCWs” - a fourth distinct category, which excludes physicians and nurses. Using quantitative network modeling tools, we constructed the resulting HCW “co-location network” to illustrate contacts among different occupations and with locations in hospital settings. Results: Among 3048 respondents (response rate 38%) an average of 3.79, 3.69 and 3.88 floors were visited by each HCW each week in the 3 hospitals, with a standard deviation of 2.63, 1.74 and 2.08, respectively. Physicians reported the highest rate of direct patient contacts (> 20 patients/day) but the lowest rate of contacts with other HCWs; nurses had the most extended (> 20 min) periods of direct patient contact. “Other HCWs” had the most direct daily contact with all other HCWs. Physicians also reported significantly more locations visited per week than nurses, other HCW, or administrators; nurses visited the fewest. Public spaces such as the cafeteria had the most staff visits per week, but the least mean hours spent per visit. Inpatient settings had significantly more HCW interactions per week than outpatient settings. Conclusions: HCW contact patterns and spatial movement demonstrate significant heterogeneity by occupation. Control strategies that address this diversity among health care workers may be more effective than “one-strategy-fits-all” HAI prevention and control programs.Science, Faculty ofNon UBCResources, Environment and Sustainability (IRES), Institute forReviewedFacult

    Inflammation and Alzheimer's disease.

    No full text
    Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorde
    corecore