6 research outputs found

    MCLMAN, a new minimal medium for Campylobacter jejuni NCTC 11168.

    No full text
    International audienceThe design of a defined synthetic minimal medium for Campylobacter jejuni strain NCTC 11168 that includes only inorganic salts and necessary amino acids and vitamins is useful in physiological assays and responses to exogeneous agents. In silico genomic analysis of biosynthesis pathways was preliminarily performed prior to experimental assays to determine (i) amino acids and vitamins necessary for improving the growth of C. jejuni strains, and (ii) the most appropriate sources of carbon, nitrogen and sulfur. The different sources of carbon, nitrogen and sulfur were analyzed by comparing growth parameters. A new minimal medium that contains inorganic salts, the amino acids l-cysteine, l-leucine, l-methionine and l-aspartic acid (nitrogen source), the vitamin niacinamide and lactate as a carbon source, named MCLMAN (medium cysteine leucine methionine aspartic acid niacinamide), was checked on some C. jejuni strains and showed similar growth ratios and final biomass when compared to the most frequently used medium, MEM (modified Eagle's medium), primarily designed for eukaryote cell culture and more complex than MCLMAN. Our results show that C. jejuni presents auxotrophy for cysteine and methionine and can be inhibited by ammonium sulfate. A simple minimal medium containing few amino acids and vitamins will facilitate physiological studies of different functions in C. jejuni strains submitted to different stresses

    L’adaptation de Propionibacterium freudenreichii permet d’augmenter sa survie au séchage

    No full text
    IntroductionP. freudenreichii est utilisé comme ferment pour les fromages de type emmental et également comme probiotique. La stabilisation de P. freudenreichii sous forme de poudre est essentielle pour garantir une bonne stabilité. La lyophilisation et le séchage par atomisation peuvent être utilisés pour produire des ferments et des probiotiques en poudre. Le séchage par atomisation demande moins d’énergie que la lyophilisation. Cependant le séchage par atomisation expose les bactéries à de très hautes températures. Ce séchage est donc un procédé stressant, provocant des stress thermique, oxydatif et osmotique. En vue de résister à ce procédé, les bactéries doivent donc être adaptées. Les milieux de culture sont un moyen d’adapter les bactéries dans le but d’augmenter leur survie au séchage par atomisation.ObjectifDans cette étude, nous avons exploré l’influence de la composition du milieu de culture sur 1) l’accumulation d’osmoprotecteurs et 2) la survie des bactéries lors du séchage par atomisation.Matériels et méthodesPour le milieux riche YEL (Yeast Exctract Lactate) et les milieux laitiers, les concentrations de sel les plus élevées permettant la croissance de P. freudenreichii ont été choisies. Les osmoprotecteurs accumulés par P. freudenreichii ont été identifiés et quantifiés par RMN du proton et du carbone. Les différentes cultures ont ensuite subi les challenges oxydatifs, thermique et le séchage par atomisation.RésultatsPendant la croissance, P. feudenreichii CIRM-BIA 129 accumulent du tréhalose, du glutamate et de la glycine betaine. En condition hyper osmotique, l’accumulation de ces osmoprotecteurs est plus élevés. Le lactose naturellement présent dans le lactosérum, ou ajouté dans le YEL, provoque une adaptation au stress acide, mais augmente également l’accumulation intracellulaire du tréhalose. Le ratio tréhalose/glycine betaine accumulés est déterminé par le ratio azote/carbone du milieu de culture. Avec un ratio tréhalose/glycine betaine optimisé, P. freudenreihcii a une meilleure survie au challenge thermique et oxydatif, comme au séchage par atomisation.ConclusionPiloter la composition du milieu de culture de P. freudenreichii permet de diriger l’adaptation et conduit à une meilleure survie durant le séchage par atomisation. Ceci permettra par la suite la production de qualité des ferments et probiotiques avec de hauts rendement

    Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses

    Get PDF
    This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria,and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as wellas the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case

    Propionibacterium freudenreichii CIRM-BIA 129 Osmoadaptation Coupled to Acid-Adaptation Increases Its Viability During Freeze-Drying

    Get PDF
    International audiencePropionibacterium freudenreichii is a beneficial bacterium with documented effects on the gut microbiota and on inflammation. Its presence within the animal and human intestinal microbiota was correlated with immunomodulatory effects, mediated by both propionibacterial surface components and by secreted metabolites. It is widely implemented, both in the manufacture of fermented dairy products such as Swiss-type cheeses, and in the production of probiotic food complements, under the form of freeze-dried powders. The bottleneck of this drying process consists in the limited survival of bacteria during drying and storage. Protective pre-treatments have been applied to other bacteria and may, in a strain-dependent manner, confer enhanced resistance. However, very little information was yet published on P. freudenreichii adaptation to freeze-drying. In this report, an immunomodulatory strain of this probiotic bacterium was cultured under hyperosmotic constraint in order to trigger osmoadaptation. This adaptation was then combined with acid or thermal pre-treatment. Such combination led to accumulation of key stress proteins, of intracellular compatible solute glycine betaine, to modulation of the propionibacterial membrane composition, and to enhanced survival upon freeze-drying. This work opens new perspectives for efficient production of live and active probiotic propionibacteria
    corecore