66 research outputs found

    Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome

    Get PDF
    Bacteria use carbohydrate-binding proteins (CBPs), such as lectins and carbohydrate-binding modules (CBMs), to anchor to specific sugars on host surfaces. CBPs in the gut microbiome are well studied, but their roles in the vagina microbiome and involvement in sexually transmitted infections, cervical cancer and preterm birth are largely unknown. We established a classification system for lectins and designed Hidden Markov Model (HMM) profiles for data mining of bacterial genomes, resulting in identification of >100,000 predicted bacterial lectins available at unilectin.eu/bacteria. Genome screening of 90 isolates from 21 vaginal bacterial species shows that those associated with infection and inflammation produce a larger CBPs repertoire, thus enabling them to potentially bind a wider array of glycans in the vagina. Both the number of predicted bacterial CBPs and their specificities correlated with pathogenicity. This study provides new insights into potential mechanisms of colonisation by commensals and potential pathogens of the reproductive tract that underpin health and disease states

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    Structure optimization of electro-optic polymer waveguides for low half-wave voltage modulators

    No full text
    conference 7728 " Nonlinear Optics and its Applications ", session " Posters--Tuesday " [7728-52]International audienceIn this article, we discuss the waveguide dimensions optimization aiming to reduce the Vπ. For that purpose, various cover materials are investigated leading to a minimum effective core area " Aeff". The index contrast (core-cladding) at λ= 1550 nm, is varying from 0.07 to 0.21. As a result, the Aeff decreases from 12 μm2 down to 2.3 μm2, the total thickness of the waveguide is thus reduced and consequently the Vπ. Optimal parameters were calculated at λ= 1550 nm for single mode inverted-rib waveguides structure. The PAS1 a new polymer is used as electro-optic material for the core. An analytical model taking account the losses by tunnelling, allowed us to estimate the optimum distance between electrodes to reduce the Vπ which could be about 1.6V ( 0.8 V in a push-pull configuration). Related with the bandwidth of the modulator, permittivity measurements were carried out on core and cladding polymers as well. The process of waveguides fabrication is described in details and several waveguides are performed. Finally, a new experimental technique for precision measurements of the propagation losses in waveguides is presented. The principle is simple, and the propagation losses measured is found to be independent of coupling conditions

    Die Anforderungen an den Straßenbahnfahrer

    No full text
    corecore