28 research outputs found

    Hijacking of the Pleiotropic Cytokine Interferon-γ by the Type III Secretion System of Yersinia pestis

    Get PDF
    Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague

    Heparan sulfate mimicry: a synthetic glycoconjugate that recognizes the heparin binding domain of interferon-gamma inhibits the cytokine activity.

    No full text
    Cell-associated heparan sulfate (HS) is endowed with the remarkable ability to bind numerous proteins. As such, it represents a unique system that integrates signaling from circulating ligands with cellular receptors. This polysaccharide is extraordinary complex, and examples that define the structure-function relationship of HS are limited. In particular, it remains difficult to understand the structures by which HS interact with proteins. Among them, interferon-gamma (IFNgamma), a dimeric cytokine, binds to a complex oligosaccharide motif encompassing a N-acetylated glucosamine-rich domain and two highly sulfated sequences, each of which binds to one IFNgamma monomer. Based on this template, we have synthesized a set of glycoconjugate mimetics and evaluated their ability to interact with IFNgamma. One of these molecules, composed of two authentic N-sulfated octasaccharides linked to each other through a 50-Angstroms-long spacer termed 2O(10), displays high affinity for the cytokine and inhibits IFNgamma-HS binding with an IC(50) of 35-40 nm. Interestingly, this molecule also inhibits the binding of IFNgamma to its cellular receptor. Thus, in addition to its ability to delocalize the cytokine from cell surface-associated HS, this compound has direct anti-IFNgamma activity. Altogether, our results represent the first synthetic HS-like molecule that targets a cytokine, strongly validating the HS structural determinants for IFNgamma recognition, providing a new strategy to inhibit IFNgamma in a number of diseases in which the cytokine has been identified as a target, and reinforcing the view that it is possible to create"tailor-made"sequences based on the HS template to isolate therapeutic activities

    Synthesis of tailor-made glycoconjugate mimetics of heparan sulfate that bind IFN-gamma in the nanomolar range.

    No full text
    International audienceWe have recently described the preparation of three building blocks for the combinatorial synthesis of heparan sulfate (HS) fragments. Herein we show that one of these building blocks (disaccharide 4) allows the preparation, in high yields and with total alpha stereoselectivity, of tetra-, hexa- and octasaccharides from the heparin (HP) regular region, by using 2+2, 2+4 and 4+4 glycosylation strategies, respectively. These oligosaccharides were processed into sulfated derivatives bearing an allyl moiety in the anomeric position. The UV-promoted conjugation of these compounds with alpha,omega-bis(thio)poly(ethylene glycol) spacers of three different lengths allowed us to prepare nine benzylated glycoconjugates. After final deprotection, the glycoconjugates 1 a-c, 2 a-c and 3 a-c were obtained and their ability to inhibit the interaction between IFN-gamma and HP was tested by using surface plasmon resonance detection. Compound 3 b, containing two HP octasaccharides linked by a 50-A linker was able to inhibit the IFN-gamma/HP interaction with an IC(50) value of approximately 35 nM. In addition, the nine glycoconjugates were perfect tools in the study to ascertain the topology of the IFN-gamma binding site on HS. Compounds 1 a-c, 2 a-c and 3 a-c, by mimicking the alternating sulfated and nonsulfated regions found in HS, thus comprise the first example of a library of synthetic HS mimetics giving access to the "second level of molecular diversity" found in HS

    HABA-based ionic liquid matrices for UV-MALDI-MS analysis of heparin and heparan sulfate oligosaccharides.

    No full text
    International audiencePolysulfated carbohydrates such as heparin (HP) and heparan sulfate (HS) are not easily amenable to usual ultraviolet matrix-assisted laser desorption/ionization-mass spectrometry (UV-MALDI)-MS analysis due to the thermal lability of their O- and N-SO(3) moieties, and their poor ionization efficiency with common crystalline matrices. Recently, ionic liquid matrices showed considerable advantages over conventional matrices for MALDI-MS of acidic compounds. Two new ionic liquid matrices (ILMs) based on the combination of 2-(4-hydroxyphenylazo)benzoic acid (HABA) with 1,1,3,3-tetramethylguanidine and spermine were evaluated in the study herein. Both ILMs were successfully applied to the analysis of synthetic heparin oligosaccharides of well-characterized structures as well as to heparan sulfate-derived oligosaccharides from enzymatic depolymerization. HABA-based ILMs showed improved signal-to-noise ratio as well as a decrease of fragmentation/desulfation processes and cation exchange. Sulfated oligosaccharides were detected with higher sensitivity than usual crystalline matrices, and their intact fully O- and N-sulfated species [M-Na](-) were easily observed on mass spectra. MALDI-MS characterization of challenging analytes such as heparin octasaccharide carrying 8-O and 4 N-sulfo groups, and heparin octadecasulfated dodecasaccharide was successfully achieved

    Copper-free click chemistry for highly luminescent quantum dot conjugates: application to in vivo metabolic imaging.

    No full text
    International audienceQuantum dots (QD) are inorganic nanocrystals with outstanding optical properties, specially suited for biological imaging applications. Their attachment to biomolecules in mild aqueous conditions for the design of bioconjugates is therefore highly desirable. 1,3-dipolar [3 + 2] cycloaddition between azides and terminal alkynes ("click chemistry") could represent an attractive QD functionalization method. Unfortunately, the use of the popular Cu(I)-catalyzed version of this reaction is not applicable for achieving this goal, since the presence of copper dramatically alters the luminescence properties of QD dispersions. We demonstrate here that copper-free click chemistry, between strained cyclooctyne functionalized QD and azido-biomolecules, leads to highly luminescent conjugates. In addition, we show that QD-cyclooctyne can be used at previously unreported low concentration (250 nM) for imaging the incorporation of azido-modified sialic acid in cell membrane glycoproteins

    A Synthetic Heparan Sulfate-Mimetic Peptide Conjugated to a Mini CD4 Displays Very High Anti- HIV-1 Activity Independently of Coreceptor Usage.

    No full text
    International audienceThe HIV-1 envelope gp120, which features both the virus receptor (CD4) and coreceptor (CCR5/CXCR4) binding sites, offers multiple sites for therapeutic intervention. However, the latter becomes exposed, thus vulnerable to inhibition, only transiently when the virus has already bound cellular CD4. To pierce this defense mechanism, we engineered a series of heparan sulfate mimicking tridecapeptides and showed that one of them target the gp120 coreceptor binding site with μM affinity. Covalently linked to a CD4-mimetic that binds to gp120 and renders the coreceptor binding domain available to be targeted, the conjugated tridecapeptide now displays nanomolar affinity for its target. Using solubilized coreceptors captured on top of sensorchip we show that it inhibits gp120 binding to both CCR5 and CXCR4 and in peripheral blood mononuclear cells broadly inhibits HIV-1 replication with an IC(50) of 1 nM
    corecore