217 research outputs found

    Ozone stress as a driving force of sesquiterpene emissions: a suggested parameterization [Discussion paper]

    Get PDF
    Sesquiterpenes (C15H24) are semi-volatile organic compounds emitted by vegetation and are of interest in atmospheric research because they influence the oxidative capacity of the atmosphere and contribute to the formation of secondary organic aerosols. However, little is known about their emission pattern and no established parameterization is available for global emission models. The aim of this study is to investigate a Central European spruce forest and its emission response to meteorological and environmental parameters, looking for a parameterization that incorporates heat and oxidative stress as the main driving forces of the induced emissions. Therefore, a healthy ca. 80 yr old Norway spruce (Picea abies) tree was selected and a dynamical vegetation enclosure technique was applied from April to November 2011. The emissions clearly responded to temperature changes with small variations in the β-factor along the year (βspring=0.09 ± 0.01, βsummer=0.12 ± 0.02, βautumn=0.11 ± 0.02). However, daily calculated values revealed a vast amount of variability in temperature dependencies ((0.02 ± 0.002)< β<(0.27 ± 0.04)) with no distinct seasonality. By separating the complete dataset in 10 different ozone regimes, we found that in moderately or less polluted atmospheric conditions the main driving force of sesquiterpene emissions is the temperature, but when ambient ozone mixing ratios exceed a~critical threshold of (36.6 ± 3.9) ppbv, the emissions become primarily correlated with ozone. Considering the complete dataset, cross correlation analysis resulted in highest correlation with ambient ozone mixing ratios (CCO3=0.63 ± 0.01; CCT=0.47 ± 0.02 at t=0 h for temperature) with a time shift 2–4 h prior to the emissions. An only temperature dependent algorithm was found to substantially underestimate the induced emissions (20 % of the measured; R2=0.31). However, the addition of an ozone dependent term improved substantially the fitting between measured and modeled emissions (81 % of the measured; R2=0.63), providing confidence about the reliability of the suggested parameterization for the spruce forest site investigated

    Ozone stress as a driving force of sesquiterpene emissions: a suggested parameterisation

    Get PDF
    Sesquiterpenes (C15H24) are semi-volatile organic compounds emitted by vegetation and are of interest in atmospheric research because they influence the oxidative capacity of the atmosphere and contribute to the formation of secondary organic aerosols. However, little is known about their emission pattern and no established parameterisation is available for global emission models. The aim of this study is to investigate a Central European spruce forest and its emission response to meteorological and environmental parameters, looking for a parameterisation that incorporates heat and oxidative stress as the main driving forces of the induced emissions. Therefore, a healthy ca. 80 yr old Norway spruce (Picea abies) tree was selected and a dynamical vegetation enclosure technique was applied from April to November 2011. The emissions clearly responded to temperature changes with small variations in the β-factor along the year (βspring = 0.09 ± 0.01, βsummer = 0.12 ± 0.02, βautumn = 0.11 ± 0.02). However, daily calculated values revealed a vast amount of variability in temperature dependencies ((0.02 ± 0.002) < β < (0.27 ± 0.04)) with no distinct seasonality. By separating the complete dataset in 10 different ozone regimes, we found that in moderately or less polluted atmospheric conditions the main driving force of sesquiterpene emissions is the temperature, but when ambient ozone mixing ratios exceed a critical threshold of (36.6 ± 3.9) ppbv, the emissions become primarily correlated with ozone. Considering the complete dataset, cross correlation analysis resulted in highest correlation with ambient ozone mixing ratios (CCO3 = 0.63 ± 0.01; CCT = 0.47 ± 0.02 at t = 0 h for temperature) with a time shift 2–4 h prior to the emissions. An only temperature dependent algorithm was found to substantially underestimate the induced emissions (20% of the measured; R2 = 0.31). However, the addition of an ozone dependent term improved substantially the fitting between measured and modelled emissions (81% of the modelled emissions could be explained by the measurements; R2 = 0.63), providing confidence about the reliability of the suggested parameterisation for the spruce forest site investigated

    Ambient new particle formation parameter indicates potential rise in future events

    Get PDF
    Atmospheric new particle formation is a general phenomenon observed over coniferous forests. So far nucleation is described as a function of gaseous sulfuric acid concentration only, which is unable to explain the observed seasonality of nucleation events at different measurement sites. Here we introduce a new nucleation parameter including ozone and water vapor concentrations as well as UV-B radiation as a proxy for OH radical formation. Applying this new parameter to field studies conducted at Finnish and German measurement sites it is found capable to predict the occurrence of nucleation events and their seasonal and annual variation indicating a significant role of organics. Extrapolation to possible future conditions of ozone, water vapor and organic concentrations leads to a significant potential increase in nucleation event number

    A new parametrization for ambient particle formation over coniferous forests and its potential implications for the future

    Get PDF
    Atmospheric new particle formation is a general phenomenon observed over coniferous forests. So far nucleation is either parameterised as a function of gaseous sulphuric acid concentration only, which is unable to explain the observed seasonality of nucleation events at different measurement sites, or as a function of sulphuric acid and organic molecules. Here we introduce different nucleation parameters based on the interaction of sulphuric acid and terpene oxidation products and elucidate the individual importance. They include basic trace gas and meteorological measurements such as ozone and water vapour concentrations, temperature (for terpene emission) and UV B radiation as a proxy for OH radical formation. We apply these new parameters to field studies conducted at conducted at Finnish and German measurement sites and compare these to nucleation observations on a daily and annual scale. General agreement was found, although the specific compounds responsible for the nucleation process remain speculative. This can be interpreted as follows: During cooler seasons the emission of biogenic terpenes and the OH availability limits the new particle formation while towards warmer seasons the ratio of ozone and water vapour concentration seems to dominate the general behaviour. Therefore, organics seem to support ambient nucleation besides sulphuric acid or an OH-related compound. Using these nucleation parameters to extrapolate the current conditions to prognosed future concentrations of ozone, water vapour and organic concentrations leads to a significant potential increase in the nucleation event number

    National Ecosystem Assessments in Europe: A Review

    Get PDF
    National ecosystem assessments form an essential knowledge base for safeguarding biodiversity and ecosystem services. We analyze eight European (sub-)national ecosystem assessments (Portugal, United Kingdom, Spain, Norway, Flanders, Netherlands, Finland, and Germany) and compare their objectives, political context, methods, and operationalization. We observed remarkable differences in breadth of the assessment, methods employed, variety of services considered, policy mandates, and funding mechanisms. Biodiversity and ecosystem services are mainly assessed independently, with biodiversity conceptualized as underpinning services, as a source of conflict with services, or as a service in itself. Recommendations derived from our analysis for future ecosystem assessments include the needs to improve the common evidence base, to advance the mapping of services, to consider international flows of services, and to connect more strongly to policy questions. Although the context specificity of national ecosystem assessments is acknowledged as important, a greater harmonization across assessments could help to better inform common European policies and future pan-regional assessments

    Performance comparison of TCR-pMHC prediction tools reveals a strong data dependency

    Get PDF
    The interaction of T-cell receptors with peptide-major histocompatibility complex molecules (TCR-pMHC) plays a crucial role in adaptive immune responses. Currently there are various models aiming at predicting TCR-pMHC binding, while a standard dataset and procedure to compare the performance of these approaches is still missing. In this work we provide a general method for data collection, preprocessing, splitting and generation of negative examples, as well as comprehensive datasets to compare TCR-pMHC prediction models. We collected, harmonized, and merged all the major publicly available TCR-pMHC binding data and compared the performance of five state-of-the-art deep learning models (TITAN, NetTCR-2.0, ERGO, DLpTCR and ImRex) using this data. Our performance evaluation focuses on two scenarios: 1) different splitting methods for generating training and testing data to assess model generalization and 2) different data versions that vary in size and peptide imbalance to assess model robustness. Our results indicate that the five contemporary models do not generalize to peptides that have not been in the training set. We can also show that model performance is strongly dependent on the data balance and size, which indicates a relatively low model robustness. These results suggest that TCR-pMHC binding prediction remains highly challenging and requires further high quality data and novel algorithmic approaches

    RNF40 regulates gene expression in an epigenetic context-dependent manner

    Get PDF
    Background Monoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes. Results Using conditional Rnf40 knockout mouse embryo fibroblasts, we show that genes occupied by low to moderate amounts of H2Bub1 are selectively regulated in response to Rnf40 deletion, whereas genes marked by high levels of H2Bub1 are mostly unaffected by Rnf40 loss. Furthermore, we find that decreased expression of RNF40-dependent genes is highly associated with widespread narrowing of H3K4me3 peaks. H2Bub1 promotes the broadening of H3K4me3 to increase transcriptional elongation, which together lead to increased tissue-specific gene transcription. Notably, genes upregulated following Rnf40 deletion, including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 deletion due to decreased expression of the Ezh2 gene. As a consequence, increased expression of some RNF40-“suppressed” genes is associated with enhancer activation via FOXL2. Conclusion Together these findings reveal the complexity and context-dependency whereby one histone modification can have divergent effects on gene transcription. Furthermore, we show that these effects are dependent upon the activity of other epigenetic regulatory proteins and histone modifications
    corecore