9 research outputs found

    La méthode PGD-BEM appliquée à l’équation de la chaleur nonlinéaire

    Get PDF
    National audienceDans [1] nous avons proposé une nouvelle méthode non incrémentale pour résoudre l’équation de la chaleur linéaire, la PGD-BEM. Nous proposons, une adaptation de cet algorithme dans le cas où le coefficient de conductivité thermique dépend de la température. Cette approche ne demande pas de connaître le noyau de Green de l’équation de la chaleur non-linéaire, seul le noyau de l’équation de Poisson en espace est nécessaire. Nous validons notre approche sur un exemple numérique

    Méthodes numériques innovantes pour la simulation thermique de composants électroniques

    No full text
    Electronic components have large geometric scale factors, and involve materials with very different thermal conductivities. Experience shows that in this context, the boundary element method is a good choice for thermal simulation in steady state. In transient regime, the temporal dimension adds a number of difficulties. Among these are typically higher computation time and stability criteria, or more generally the links between spatial and temporal discretizations. More specifically, a current issue in electronics is to measure the impact of highly localized phenomena, such as switching or short circuit on the overall thermal component. This is then coupled space-time scales, ensuring in particular the changes of scale without loss of information. In the first part of this work, we propose to use the transient boundary element method to address this problem. We combine first integral formulations and various optimization techniques to reduce the computational cost of the method. We then reuse this work to develop a multi-scale approach, and generalize the boundary element method for nonlinear materials. A second part is devoted to developing an alternative method, to reduce computation time more significantly while retaining a boundary element basis. This is a proper generalized decomposition method, which builds a separate representation of the solution within a non-incremental strategy. We study the convergence of the algorithm on different test cases, providing techniques for dealing with non-homogeneous boundary conditions and initial data, and nonlinear source terms.Les composants électroniques présentent des facteurs d'échelle géométrique importants, et font intervenir des matériaux aux conductivités thermiques très différentes. L'expérience montre que dans ce cadre, la méthode des éléments de frontière est un choix judicieux pour la simulation thermique en régime permanent. En régime transitoire, la dimension temporelle ajoute un certain nombre de difficultés. Parmi celles-ci figurent classiquement l'augmentation des temps de calcul et les critères de stabilité, ou d'un manière plus générale les liens entre discrétisations spatiale et temporelle. Plus spécifiquement, un des enjeux actuels en électronique est de mesurer l'impact de phénomènes très localisés, comme des commutations ou des courts-circuits, sur la thermique globale d'un composant. Il s'agit alors de coupler différentes échelles espace-temps, en assurant en particulier des changements d'échelle sans perte d'information. Dans la première partie de ce travail, on propose d'utiliser la méthode des éléments de frontière transitoire pour répondre à cette problématique. On combine tout d'abord différentes formulations intégrales et des techniques d'optimisation pour réduire le coût de la méthode. On réutilise ensuite ce travail pour développer une approche multi-échelles, et généraliser la méthode des éléments de frontière aux matériaux non linéaires. Une seconde partie est consacrée au développement d'une méthode alternative, visant à réduire les temps de calcul de manière plus significative tout en conservant une base éléments de frontière. Il s'agit d'une méthode de décomposition propre généralisée, qui permet de construire une représentation à variables séparées de la solution de manière non incrémentale. On étudie la convergence de l'algorithme sur différents cas de test, en proposant des techniques pour traiter des conditions aux limites et initiales non homogènes, ainsi que des termes sources non linéaires

    Méthodes numériques innovantes pour la simulation thermique de composants électroniques

    No full text
    Electronic components have large geometric scale factors, and involve materials with very different thermal conductivities. Experience shows that in this context, the boundary element method is a good choice for thermal simulation in steady state. In transient regime, the temporal dimension adds a number of difficulties. Among these are typically higher computation time and stability criteria, or more generally the links between spatial and temporal discretizations. More specifically, a current issue in electronics is to measure the impact of highly localized phenomena, such as switching or short circuit on the overall thermal component. This is then coupled space-time scales, ensuring in particular the changes of scale without loss of information. In the first part of this work, we propose to use the transient boundary element method to address this problem. We combine first integral formulations and various optimization techniques to reduce the computational cost of the method. We then reuse this work to develop a multi-scale approach, and generalize the boundary element method for nonlinear materials. A second part is devoted to developing an alternative method, to reduce computation time more significantly while retaining a boundary element basis. This is a proper generalized decomposition method, which builds a separate representation of the solution within a non-incremental strategy. We study the convergence of the algorithm on different test cases, providing techniques for dealing with non-homogeneous boundary conditions and initial data, and nonlinear source terms.Les composants électroniques présentent des facteurs d'échelle géométrique importants, et font intervenir des matériaux aux conductivités thermiques très différentes. L'expérience montre que dans ce cadre, la méthode des éléments de frontière est un choix judicieux pour la simulation thermique en régime permanent. En régime transitoire, la dimension temporelle ajoute un certain nombre de difficultés. Parmi celles-ci figurent classiquement l'augmentation des temps de calcul et les critères de stabilité, ou d'un manière plus générale les liens entre discrétisations spatiale et temporelle. Plus spécifiquement, un des enjeux actuels en électronique est de mesurer l'impact de phénomènes très localisés, comme des commutations ou des courts-circuits, sur la thermique globale d'un composant. Il s'agit alors de coupler différentes échelles espace-temps, en assurant en particulier des changements d'échelle sans perte d'information. Dans la première partie de ce travail, on propose d'utiliser la méthode des éléments de frontière transitoire pour répondre à cette problématique. On combine tout d'abord différentes formulations intégrales et des techniques d'optimisation pour réduire le coût de la méthode. On réutilise ensuite ce travail pour développer une approche multi-échelles, et généraliser la méthode des éléments de frontière aux matériaux non linéaires. Une seconde partie est consacrée au développement d'une méthode alternative, visant à réduire les temps de calcul de manière plus significative tout en conservant une base éléments de frontière. Il s'agit d'une méthode de décomposition propre généralisée, qui permet de construire une représentation à variables séparées de la solution de manière non incrémentale. On étudie la convergence de l'algorithme sur différents cas de test, en proposant des techniques pour traiter des conditions aux limites et initiales non homogènes, ainsi que des termes sources non linéaires

    Non-incremental boundary element discretization of parabolic models based on the use of the proper generalized decompositions

    Get PDF
    International audienceThere are many ways to solve space–time linear parabolic partial differential equations by using the boundary element method (BEM). In general, standard techniques make use of an incremental strategy. In this paper we propose a novel alternative of efficient non-incremental solution strategy for that kind of models. The proposed technique combines the use of the BEM with a proper generalized decomposition (PGD) that allows a space–time separated representation of the unknown field within a non-incremental integration scheme

    An Efficient Method for Solving Quasi-Periodic Problems of Thermal Diffusion

    No full text
    International audienceIn this talk we are concerned with transient thermal diffusion problems involving quasi-periodic source terms, and large scale factors in space and time. Typically, we consider a microelectronic device of some micrometers thickness and some centimeters length. We then inject a peak of power every ten microsecondes, for a simulation interval length of some seconds

    Improving BEM Solvers: The Proper Generalized Decomposition Boundary Element Method for Solving Parabolic Problems

    No full text
    International audienceIn this work we propose a new approach for solving the heat equation within the Boundary Elements method framework. This technique lies in the use of a separated representation of the unknown field that allows decoupling the space problem (that results steady state) from the temporal one (one dimensional that only involves the time coordinate)

    Méthodes numériques innovantes pour la simulation thermique de composants électroniques

    No full text
    Les composants électroniques présentent des facteurs d'échelle géométrique importants, et font intervenir des matériaux aux conductivités thermiques très différentes. L'expérience montre que dans ce cadre, la méthode des éléments de frontière est un choix judicieux pour la simulation thermique en régime permanent. En régime transitoire, la dimension temporelle ajoute un certain nombre de difficultés. Parmi celles-ci figurent classiquement l'augmentation des temps de calcul et les critères de stabilité, ou d'un manière plus générale les liens entre discrétisations spatiale et temporelle. Plus spécifiquement, un des enjeux actuels en électronique est de mesurer l'impact de phénomènes très localisés, comme des commutations ou des courts-circuits, sur la thermique globale d'un composant. Il s'agit alors de coupler différentes échelles espace-temps, en assurant en particulier des changements d'échelle sans perte d'information. Dans la première partie de ce travail, on propose d'utiliser la méthode des éléments de frontière transitoire pour répondre à cette problématique. On combine tout d'abord différentes formulations intégrales et des techniques d'optimisation pour réduire le coût de la méthode. On réutilise ensuite ce travail pour développer une approche multi-échelles, et généraliser la méthode des éléments de frontière aux matériaux non linéaires. Une seconde partie est consacrée au développement d'une méthode alternative, visant à réduire les temps de calcul de manière plus significative tout en conservant une base éléments de frontière. Il s'agit d'une méthode de décomposition propre généralisée, qui permet de construire une représentation à variables séparées de la solution de manière non incrémentale. On étudie la convergence de l'algorithme sur différents cas de test, en proposant des techniques pour traiter des conditions aux limites et initiales non homogènes, ainsi que des termes sources non linéaires.Electronic components have large geometric scale factors, and involve materials with very different thermal conductivities. Experience shows that in this context, the boundary element method is a good choice for thermal simulation in steady state. In transient regime, the temporal dimension adds a number of difficulties. Among these are typically higher computation time and stability criteria, or more generally the links between spatial and temporal discretizations. More specifically, a current issue in electronics is to measure the impact of highly localized phenomena, such as switching or short circuit on the overall thermal component. This is then coupled space-time scales, ensuring in particular the changes of scale without loss of information. In the first part of this work, we propose to use the transient boundary element method to address this problem. We combine first integral formulations and various optimization techniques to reduce the computational cost of the method. We then reuse this work to develop a multi-scale approach, and generalize the boundary element method for nonlinear materials. A second part is devoted to developing an alternative method, to reduce computation time more significantly while retaining a boundary element basis. This is a proper generalized decomposition method, which builds a separate representation of the solution within a non-incremental strategy. We study the convergence of the algorithm on different test cases, providing techniques for dealing with non-homogeneous boundary conditions and initial data, and nonlinear source terms.PARIS-Arts et Métiers (751132303) / SudocSudocFranceF

    Non-Incremental Boundary Element Discretization of non-linear heat equation based on the use of the Proper Generalized Decompositions

    No full text
    International audienceIn this work, we propose a new approach for solving the heat equation within the Boundary Elements method framework. This technique lies in the use of a separated representation of the unknown field that allows decoupling the space problem (that results steady state) from the temporal one (one dimensional that only involves the time coordinate)
    corecore