62 research outputs found

    Autosomal recessive, early-onset Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, with a prevalence of 1-2% in the population aged 65 years.1 The disease is clinically defi ned by the presence of parkinsonism (the combination of akinesia, resting tremor, and muscular rigidity), and a good response to dopaminergic therapy. These features are associated at pathological level with neuronal loss and gliosis, mainly in the substantia nigra pars compacta but also in other brain areas, and formation of cytoplasmic inclusions called Lewy bodies (LB) and Lewy neurites in the surviving neurons.2 The role of genetics versus environment in the etiology of PD has been a matter of debate for more than a century, with alternating fortunes

    Dopaminergic Neuronal Loss and Dopamine-Dependent Locomotor Defects in Fbxo7-Deficient Zebrafish

    Get PDF
    Recessive mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, a Mendelian form of early-onset, levodopa-responsive parkinsonism with severe loss of nigrostriatal dopaminergic neurons. However, the function of the protein encoded by FBXO7, and the pathogenesis of PARK15 remain unknown. No animal models of this disease exist. Here, we report the generation of a vertebrate model of PARK15 in zebrafish. We first show that the zebrafish Fbxo7 homolog protein (zFbxo7) is expressed abundantly in the normal zebrafish brain. Next, we used two zFbxo7-specific morpholinos (targeting protein translation and mRNA splicing, respectively), to knock down the zFbxo7 expression. The injection of either of these zFbxo7-specific morpholinos in the fish embryos induced a marked decrease in the zFbxo7 protein expression, and a range of developmental defects. Furthermore, whole-mount in situ mRNA hybridization showed abnormal patterning and significant decrease in the number of diencephalic tyrosine hydroxylase-expressing neurons, corresponding to the human nigrostriatal or ventral tegmental dopaminergic neurons. Of note, the number of the dopamine transporter-expressing neurons was much more severely depleted, suggesting dopaminergic dysfunctions earlier and larger than those due to neuronal loss. Last, the zFbxo7 morphants displayed severe locomotor disturbances (bradykinesia), which were dramatically improved by the dopaminergic agonist apomorphine. The severity of these morphological and behavioral abnormalities correlated with the severity of zFbxo7 protein deficiency. Moreover, the effects of the co-injection of zFbxo7- and p53-specific morpholinos were similar to those obtained with zFbxo7-specific morpholinos alone, supporting further the contention that the observed phenotypes were specifically due to the knock down of zFbxo7. In conclusion, this novel vertebrate model reproduces pathologic and behavioral hallmarks of human parkinsonism (dopaminergic neuronal loss and dopamine-dependent bradykinesia), representing therefore a valid tool for investigating the mechanisms of selective dopaminergic neuronal death, and screening for modifier genes and therapeutic compounds

    Loss of Nuclear Activity of the FBXO7 Protein in Patients with Parkinsonian-Pyramidal Syndrome (PARK15)

    Get PDF
    Mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, an autosomal recessive neurodegenerative disease presenting with severe levodopa-responsive parkinsonism and pyramidal disturbances. Understanding the PARK15 pathogenesis might thus provide clues on the mechanisms of maintenance of brain dopaminergic neurons, the same which are lost in Parkinson's disease. The protein(s) encoded by FBXO7 remain very poorly characterized. Here, we show that two protein isoforms are expressed from the FBXO7 gene in normal human cells. The isoform 1 is more abundant, particularly in primary skin fibroblasts. Both isoforms are undetectable in cell lines from the PARK15 patient of an Italian family; the isoform 1 is undetectable and the isoform 2 is severely decreased in the patients from a Dutch PARK15 family. In human cell lines and mouse primary neurons, the endogenous or over-expressed, wild type FBXO7 isoform 1 displays mostly a diffuse nuclear localization. An intact N-terminus is needed for the nuclear FBXO7 localization, as N-terminal modification by PARK15-linked missense mutation, or N-terminus tag leads to cytoplasmic mislocalization. Furthermore, the N-terminus of wild type FBXO7 (but not of mutant FBXO7) is able to confer nuclear localization to profilin (a cytoplasmic protein). Our data also suggest that overexpressed mutant FBXO7 proteins (T22M, R378G and R498X) have decreased stability compared to their wild type counterpart. In human brain, FBXO7 immunoreactivity was highest in the nuclei of neurons throughout the cerebral cortex, intermediate in the globus pallidum and the substantia nigra, and lowest in the hippocampus and cerebellum. In conclusion, the common cellular abnormality found in the PARK15 patients from the Dutch and Italian families is the depletion of the FBXO7 isoform 1, which normally localizes in the cell nucleus. The activity of FBXO7 in the nucleus appears therefore crucial for the maintenance of brain neurons and the pathogenesis of PARK15

    Family History is Associated with Phenotype in Dementia with Lewy Bodies

    Get PDF
    It is currently unknown whether patients with dementia with Lewy bodies (DLB) with relatives with dementia or Parkinson's disease (familial DLB patients) have a different phenotype than sporadic DLB patients. In this study, we aimed to examine disease onset, rate of cognitive decline, survival, and Alzheimer's disease (AD) biomarkers in patients with familial DLB (n = 154) and sporadic DLB (n = 137), using linear mixed model analysis and Cox regression analysis, among others. Familial patients had a shorter survival (8.0 years) and more often elevated cerebrospinal fluid AD biomarkers (47%) than sporadic patients (9.0 years; p≤0.001; 30%, p = 0.037). Our findings suggest that genetic factors are important in DLB and that the identification of new genetic factors will probably improve the prediction of prognosis

    Novel GCH1 variant in Dopa-responsive dystonia and Parkinson's disease

    Get PDF
    Background: GTP cyclohydrolase I (GCH1) mutations are the commonest cause of Dopa-responsive dystonia (DRD). Clinical phenotypes can be broad, even within a single family. Methods: We present clinical, genetic and functional imaging data on a British kindred in which affected subjects display phenotypes ranging from DRD to Parkinson's disease (PD). Twelve family members were studied. Clinical examination, dopamine transporter (DAT) imaging, and molecular genetic analysis of GCH1 and the commonest known familial PD-related genes were performed. Results: We have identified a novel missense variant, c.5A>G, p.(Glu2Gly), within the GCH1 gene in affected family members displaying a range of phenotypes. Two affected subjects carrying this variant had abnormal DAT imaging. These two with abnormal DAT imaging had a PD phenotype, while the remaining three subjects with the novel GCH1 variant had normal DAT imaging and a DRD phenotype. Conclusions: We propose that this GCH1 variant is pathogenic in this family and these findings suggest that similar mechanisms involving abnormal GTP cyclohydolase I may underlie both PD and DRD. GCH1 genetic testing should be considered in patients with PD and a family history of DRD

    Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson's disease

    Get PDF
    Mitochondrial dysfunction and oxidative stress occur in Parkinson's disease (PD), but the molecular mechanisms controlling these events are not completely understood. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a transcriptional coactivator known as master regulator of mitochondrial functions and oxidative metabolism. Recent studies, including one from our group, have highlighted altered PGC-1α activity and transcriptional deregulation of its target genes in PD pathogenesis suggesting it as a new potential therapeutic target. Resveratrol, a natural polyphenolic compound proved to improve mitochondrial activity through the activation of several metabolic sensors resulting in PGC-1α activation. Here we have tested in vitro the effect of resveratrol treatment on primary fibroblast cultures from two patients with early-onset PD linked to different Park2 mutations. We show that resveratrol regulates energy homeostasis through activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) and raise of mRNA expression of a number of PGC-1α's target genes resulting in enhanced mitochondrial oxidative function, likely related to a decrease of oxidative stress and to an increase of mitochondrial biogenesis. The functional impact of resveratrol treatment encompassed an increase of complex I and citrate synthase activities, basal oxygen consumption, and mitochondrial ATP production and a decrease in lactate content, thus supporting a switch from glycolytic to oxidative metabolism. Moreover, resveratrol treatment caused an enhanced macro-autophagic flux through activation of an LC3-independent pathway. Our results, obtained in early-onset PD fibroblasts, suggest that resveratrol may have potential clinical application in selected cases of PD-affected patients

    Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson’s Disease and Dementia with Lewy Bodies

    Get PDF
    Mutations in the GBA gene, encoding the lysosomal hydrolase glucocerebrosidase (GCase), are the most common known genetic risk factor for Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). The present study aims to gain more insight into changes in lysosomal activity in different brain regions of sporadic PD and DLB patients, screened for GBA variants. Enzymatic activities of GCase, β-hexosaminidase, and cathepsin D were measured in the frontal cortex, putamen, and substantia nigra (SN) of a cohort of patients with advanced PD and DLB as well as age-matched non-demented controls (n = 15/group) using fluorometric assays. Decreased activity of GCase (− 21%) and of cathepsin D (− 15%) was found in the SN and frontal cortex of patients with PD and DLB compared to controls, respectively. Population stratification was applied based on GBA genotype, showing substantially lower GCase activity (~ − 40%) in GBA variant carriers in all regions. GCase activity was further significantly decreased in the SN of PD and DLB patients without GBA variants in comparison to controls without GBA variants. Our results show decreased GCase activity in brains of PD and DLB patients with and without GBA variants, most pronounced in the SN. The results of our study confirm findings from previous studies, suggesting a role for GCase in GBA-associated as well as sporadic PD and DLB

    The LRRK2 Arg1628Pro variant is a risk factor for Parkinson's disease in the Chinese population

    Get PDF
    The c.G4883C variant in the leucine-rich repeat kinase 2 (LRRK2) gene (protein effect: Arg1628Pro) has been recently proposed as a second risk factor for sporadic Parkinson's disease in the Han Chinese population (after the Gly2385Arg variant). In this paper, we analyze the Arg1628Pro variant and the associated haplotype in a large sample of 1,337 Han subjects (834 patients and 543 controls) ascertained from a single referral center in Taiwan. In our sample, the Arg1628Pro allele was more frequent among patients (3.8%) than among controls (1.8%; p = 0.004, OR 2.13, 95% CI 1.29-3.52). Sixty heterozygous and two homozygous carriers of the Arg1628Pro variant were identified among the patients, of which only one was also a carrier of the LRRK2 Gly2385Arg variant. We also show that carriers of the Arg1628Pro variant share a common, extended haplotype, suggesting a founder effect. Parkinson's disease onset age was similar in patients who carried the Arg1628Pro variant and in those who did not carry it. Our data support the contention that the Arg1628Pro variant is a second risk factor for Parkinson's disease in the Han Chinese population. Adding the estimated effects of Arg1628Pro (population attributable risk [PAR] ∼4%) and Gly2385Arg variants (PAR ∼6%) yields a total PAR of ∼10%

    Clinical and Pathological Phenotypes of LRP10 Variant Carriers with Dementia

    Get PDF
    BACKGROUND: Rare variants in the low-density lipoprotein receptor related protein 10 gene (LRP10) have recently been implicated in the etiology of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). OBJECTIVE: We searched for LRP10 variants in a new series of brain donors with dementia and Lewy pathology (LP) at autopsy, or dementia and parkinsonism without LP but with various other neurodegenerative pathologies. METHODS: Sanger sequencing of LRP10 was performed in 233 donors collected by the Netherlands Brain Bank. RESULTS: Rare, possibly pathogenic heterozygous LRP10 variants were present in three patients: p.Gly453Ser in a patient with mixed Alzheimer's disease (AD)/Lewy body disease (LBD), p.Arg151Cys in a DLB patient, and p.Gly326Asp in an AD patient without LP. All three patients had a positive family history for dementia or PD. CONCLUSION: Rare LRP10 variants are present in some patients with dementia and different brain pathologies including DLB, mixed AD/LBD, and AD. These findings suggest a role for LRP10 across a broad neurodegenerative spectrum

    Early-onset parkinsonism caused by alpha-synuclein gene triplication: Clinical and genetic findings in a novel family

    Get PDF
    Introduction: Triplications of SNCA, the gene encoding for α-synuclein, cause a very rare Mendelian form of early-onset parkinsonism combined with cognitive and autonomic dysfunctions. Only six families with SNCA triplications have been described so far, limiting our knowledge of the associated phenotype. In this study, we report clinical and genetic findings in a new Italian family with SNCA triplication. Methods: The patients' phenotype was assessed by neurological examination, neuropsychological tests, and brain imaging (MRI and SPECT-DaTSCAN). For the genetic investigation, we used three independent techniques: genome-wide SNP microarrays, fluorescence in situ hybridization (FISH), and multiplex ligation-dependent probe amplification (MLPA). Results: Genetic studies documented the presence of four copies of the SNCA gene in the affected family members. FISH experiments and the segregation in the family were consistent with a heterozygous triplication of the SNCA locus. The patients carrying the SNCA triplication developed early-onset parkinsonism combined with depression, behavior disturbances, sleep disorders, and cognitive decline; marked autonomic dysfunctions were not observed. Brain imaging revealed fronto-parietal atrophy and a severe striatal dopaminergic deficit. Conclusion: The identification of this novel family contributes to the genetic and clinical characterization of this rare form. Our data reinforce the view that SNCA triplications cause early-onset parkinsonism, with prominent non-motor features
    • …
    corecore