1,100 research outputs found

    The cosmic lithium problem: an observer's perspective

    Full text link
    Using the cosmological constants derived from WMAP, the standard big bang nucleosynthesis (SBBN) predicts the light elements primordial abundances for 4He, 3He, D, 6Li and 7Li. These predictions are in satisfactory agreement with the observations, except for lithium which displays in old warm dwarfs an abundance depleted by a factor of about 3. Depletions of this fragile element may be produced by several physical processes, in different stellar evolutionary phases, they will be briefly reviewed here, none of them seeming yet to reproduce the observed depletion pattern in a fully convincing way.Comment: Invited review at the conference Lithium in the cosmos, Paris 27-29 Feb 2012, one reference adde

    The low Sr/Ba ratio on some extremely metal-poor stars

    Full text link
    It has been noted that, in classical extremely metal-poor (EMP) stars, the abundance ratio of Sr and Ba, is always higher than [Sr/Ba] = -0.5, the value of the solar r-only process; however, a handful of EMP stars have recently been found with a very low Sr/Ba ratio. We try to understand the origin of this anomaly by comparing the abundance pattern of the elements in these stars and in the classical EMP stars. Four stars with very low Sr/Ba ratios were observed and analyzed within LTE approximation through 1D (hydrostatic) model atmosphere, providing homogeneous abundances of nine neutron-capture elements. In CS 22950-173, the only turnoff star of the sample, the Sr/Ba ratio is, in fact, found to be higher than the r-only solar ratio, so the star is discarded. The remaining stars (CS 29493-090, CS 30322-023, HE 305-4520) are cool evolved giants. They do not present a clear carbon enrichment. The abundance patterns of the neutron-capture elements in the three stars are strikingly similar to a theoretical s-process pattern. This pattern could at first be attributed to pollution by a nearby AGB, but none of the stars presents a clear variation in the radial velocity indicating the presence of a companion. The stellar parameters seem to exclude any internal pollution in a TP-AGB phase for at least two of these stars. The possibility that the stars are early-AGB stars polluted during the core He flash does not seem compatible with the theory.Comment: Accepted for publication in Astronomy and Astrophysic

    Effects of atomic diffraction on the Collective Atomic Recoil Laser

    Full text link
    We formulate a wave atom optics theory of the Collective Atomic Recoil Laser, where the atomic center-of-mass motion is treated quantum mechanically. By comparing the predictions of this theory with those of the ray atom optics theory, which treats the center-of-mass motion classically, we show that for the case of a far off-resonant pump laser the ray optics model fails to predict the linear response of the CARL when the temperature is of the order of the recoil temperature or less. This is due to the fact that in theis temperature regime one can no longer ignore the effects of matter-wave diffraction on the atomic center-of-mass motion.Comment: plain tex, 10 pages, 10 figure

    Gravitino Dark Matter and the Cosmic Lithium Abundances

    Full text link
    Supersymmetric extensions of the standard model of particle physics assuming the gravitino to be the lightest supersymmetric particle (LSP), and with the next-to-LSP decaying to the gravitino during Big Bang nucleosynthesis, are analyzed. Particular emphasis is laid on their potential to solve the "Li7 problem", an apparent factor 2-4 overproduction of Li7 in standard Big Bang nucleosynthesis (BBN), their production of cosmologically important amounts of Li6, as well as the resulting gravitino dark matter densities in these models. The study includes several improvements compared to prior studies. Heavy gravitinos in the constrained minimal supersymmetric standard model (CMMSM) are reanalyzed, whereas light gravitinos in gauge-mediated supersymmetry breaking scenarios (GMSB) are studied for the first time. It is confirmed that decays of NLSP staus to heavy gravitinos, while producing all the dark matter, may at the same time resolve the Li7 problem. For NLSP decay times ~ 1000 sec, such scenarios also lead to cosmologically important Li6 (and possibly Be9) abundances. However, as such scenarios require heavy > 1 TeV staus they are likely not testable at the LHC. It is found that decays of NLSP staus to light gravitinos may lead to significant Li6 (and Be9) abundances, whereas NLSP neutralinos decaying into light gravitinos may solve the Li7 problem. Though both scenarios are testable at the LHC they may not lead to the production of the bulk of the dark matter. A section of the paper outlines particle properties required to significantly reduce the Li7 abundance, and/or enhance the Li6 (and possibly Be9) abundances, by the decay of an arbitrary relic particle.Comment: 13 pages (revtex), 9 figures, minor changes, submitted to PR

    Beryllium in Ultra-Lithium-Deficient Halo Stars - The Blue Straggler Connection

    Full text link
    There are nine metal-deficient stars that have Li abundances well below the Li plateau that is defined by over 100 unevolved stars with temperatures above 5800 K and values of [Fe/H] << −-1.0. Abundances of Be have been determined for most of these ultra-Li-deficient stars in order to investigate the cause of the Li deficiencies. High-resolution and high signal-to-noise spectra have been obtained in the Be II spectral region near 3130 \AA for six ultra-Li-deficient stars with the Keck I telescope and its new uv-sensitive CCD on the upgraded HIRES. The spectrum synthesis technique has been used to determine Be abundances. All six stars are found to have Be deficiencies also. Two have measurable - but reduced - Be and four have only upper limits on Be. These results are consistent with the idea that these Li- and Be-deficient stars are analogous to blue stragglers. The stars have undergone mass transfer events (or mergers) which destroy or dilute both Li and Be. The findings cannot be matched by the models that predict that the deficiencies are due to extra-mixing in a subset of halo stars that were initially rapid rotators, with the possible exception of one star, G 139-8. Because the ultra-Li-deficient stars are also Be-deficient, they appear to be genuine outliers in population of halo stars used to determine the value of primordial Li; they no longer have the Li in their atmospheres that was produced in the Big Bang.Comment: 17 pages of text, 12 figures, 3 tables Submitted to Ap

    Reappraising the Spite Lithium Plateau: Extremely Thin and Marginally Consistent with WMAP

    Full text link
    The lithium abundance in 62 halo dwarfs is determined from accurate equivalent widths reported in the literature and an improved infrared flux method (IRFM) temperature scale. The Li abundance of 41 plateau stars (those with Teff > 6000 K) is found to be independent of temperature and metallicity, with a star-to-star scatter of only 0.06 dex over a broad range of temperatures (6000 K < Teff < 6800 K) and metallicities (-3.4 < [Fe/H] < -1), thus imposing stringent constraints on depletion by mixing and production by Galactic chemical evolution. We find a mean Li plateau abundance of A(Li) = 2.37 dex (7Li/H = 2.34 X 10^{-10}), which, considering errors of the order of 0.1 dex in the absolute abundance scale, is just in borderline agreement with the constraints imposed by the theory of primordial nucleosynthesis and WMAP data (2.51 < A(Li)[WMAP] < 2.66 dex).Comment: ApJ Letters, in pres
    • 

    corecore