1,700 research outputs found

    Tangible landscapes and abstract narratives

    Full text link
    © 2020 Association for Computing Machinery. The Tangible Landscapes range of interactive audiovisual and sculptural pieces offer audiences opportunities to explore abstract landscapes, recreating an embodied experience of the materials, through tangible interaction with found objects. The objects can contain sensors (tilt, orientation, movement, proximity, pressure, etc) which allow the audience to manipulate the video material through the sensors influencing the algorithms in the system. New meanings and new narratives can emerge from the audience interactions, explorations and interpretations, combining the individual and social, as well as the intimate and the spatial. Interactive art in general, and these pieces in particular, encourage and support the audience to create their own unique experiences, allowing for an individual sense of agency. The resulting patterns and images that emerge from the interaction, though these deliberate opportunities, a participative process of co-creating. This paper presents a range of these Tangible Landscape pieces, their relationship with earlier pieces and research, and placed in a context of artistic expression engaging with nature such as Landscape Art

    Joint-Angle Coordination Patterns Ensure Stabilization of a Body-Plus-Tool System in Point-to-Point Movements with a Rod

    Get PDF
    When performing a goal-directed action with a tool, it is generally assumed that the point of control of the action system is displaced from the hand to the tool, implying that body and tool function as one system. Studies of how actions with tools are performed have been limited to studying either end-effector kinematics or joint-angle coordination patterns. Because joint-angle coordination patterns affect end-effector kinematics, the current study examined them together, with the aim of revealing how body and tool function as one system. Seated participants made point-to-point movements with their index finger, and with rods of 10, 20, and 30 cm attached to their index finger. Start point and target were presented on a table in front of them, and in half of the conditions a participant displacement compensated for rod length. Results revealed that the kinematics of the rod’s tip showed higher peak velocity, longer deceleration time, and more curvature with longer rods. End-effector movements were more curved in the horizontal plane when participants were not displaced. Joint-angle trajectories were similar across rod lengths when participants were displaced, whereas more extreme joint-angles were used with longer rods when participants were not displaced. Furthermore, in every condition the end-effector was stabilized to a similar extent; both variability in joint-angle coordination patterns that affected end-effector position and variability that did not affect end-effector position increased in a similar way vis-à-vis rod length. Moreover, the increase was higher in those conditions, in which participants were not displaced. This suggests that during tool use, body and tool are united in a single system so as to stabilize the end-effector kinematics in a similar way that is independent of tool length. In addition, the properties of the actual trajectory of the end-effector, as well as the actual joint-angles used, depend on the length of the tool and the specifics of the task

    Fine-scale spatial genetic structure in the frankincense tree Boswellia papyrifera (Del.) Hochst. and implications for conservation

    Get PDF
    The fine-scale genetic structure and how it varies between generations depends on the spatial scale of gene dispersal and other fundamental aspects of species’ biology, such as the mating system. Such knowledge is crucial for the design of genetic conservation strategies. This is particularly relevant for species that are increasingly fragmented such as Boswellia papyrifera. This species occurs in dry tropical forests from Ethiopia, Eritrea and Sudan and is an important source of frankincense, a highly valued aromatic resin obtained from the bark of the tree. This study assessed the genetic diversity and fine-scale spatial genetic structure (FSGS) of two cohorts (adults and seedlings) from two populations (Guba-Arenja and Kurmuk) in Western Ethiopia and inferred intra-population gene dispersal in the species, using microsatellite markers. The expected heterozygosity (HE) was 0.664–0.724. The spatial analyses based on kinship coefficient (Fij) revealed a significant positive genetic correlation up to a distance of 130 m. Spatial genetic structure was relatively weak (Sp = 0.002–0.014) indicating that gene dispersal is extensive within the populations. Based on the FSGS patterns found, we estimate indirectly gene dispersal distances of 103 and 124 m for the two populations studied. The high heterozygosity, the low fixation index and the low Sp values found in this study are consistent with outcrossing as the (predominant) mating system in B. papyrifera. We suggest that seed collection for ex situ conservation and reforestation programmes of B. papyrifera should use trees separated by distances of at least 100 m but preferably 150 m to limit genetic relatedness among seeds from different trees

    In Vivo 3D MRI Measurement of Tumour Volume in an Orthotopic Mouse Model of Prostate Cancer

    Full text link
    © The Author(s) 2019. Prostate cancer (CaP) is the most commonly diagnosed cancer in males in western countries. Orthotopic implantation is considered as an ideal xenograft model for CaP study, and noninvasive measurement of tumor volume changes is important for monitoring responses to anticancer therapies. In this study, the T2-weighted fast spin echo sequence magnetic resonance imaging (MRI) was performed on a CaP orthotopic non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse model weekly for 6 weeks post PC-3 CaP cell inoculation, and the fat signal was suppressed using a chemical shift-selective pulse. Subsequently, the MRI data were imported into the image processing software Avizo Standard and stacked into three-dimensional (3D) volumes. Our results demonstrate that MRI, combined with 3D reconstruction, is a feasible and sensitive method to assess tumor growth in a PC-3 orthotopic CaP mouse model and this established monitoring approach is promising for longitudinal observation of CaP xenograft development after anticancer therapy in vivo. Further investigation is needed to validate this protocol in a larger cohort of mice to generate enough statistical power

    The design of a game-based training environment to enhance health care professionals’ skills in using eMental health:Study protocol for the user requirements analysis

    Get PDF
    Background: E–mental health (EMH) offers various possibilities for mental health care delivery, with many studies demonstrating its clinical efficacy. However, the uptake of EMH technologies by mental health care professionals remains to be low. One of the reasons for this is the lack of knowledge and skills in using these technologies. Skill enhancement by means of serious gaming has been shown to be effective in other areas but has not yet been applied to the development of EMH skills of mental health care professionals. Objective: The aim of this paper is to describe a study protocol for the user requirements analysis for the design of a game-based training environment for mental health care professionals to enhance their skills in EMH. Methods: The user requirements are formulated using three complementary outputs: personas (lively descriptions of potential users), scenarios (situations that require EMH skills), and prerequisites (required technical and organizational conditions). We collected the data using a questionnaire, co-design sessions, and interviews. The questionnaire was used to determine mental health care professionals’ characteristics, attitudes, and skill levels regarding EMH and was distributed among mental health care professionals in the Netherlands. This led to a number of recognizable subuser groups as the basis for personas. Co-design sessions with mental health care professionals resulted in further specification of the personas and an identification of different user scenarios for the game-based training environment. Interviews with mental health care professionals helped to determine the preferences of mental health care professionals regarding training in EMH and the technical and organizational conditions required for the prospective game-based training environment to be used in practice. This combination of requirement elicitation methods allows for a good representation of the target population in terms of both a broad view of user needs (through the large N questionnaire) and an in-depth understanding of specific design requirements (through interviews and co-design). Results: The questionnaire was filled by 432 respondents; three co-design sessions with mental health care professionals and 17 interviews were conducted. The data have been analyzed, and a full paper on the results is expected to be submitted in the first half of 2021. Conclusions: To develop an environment that can effectively support professionals’ EMH skill development, it is important to offer training possibilities that address the specific needs of mental health care professionals. The approach described in this protocol incorporates elements that enable the design of a playful training environment that is user driven and flexible and considers the technical and organizational prerequisites that influence its implementation in practice. It describes a protocol that is replicable and provides a methodology for user requirements analyses in other projects and health care areas

    Implications of thermo-chemical instability on the contracted modes in CO2 microwave plasmas

    Get PDF
    Understanding and controlling contraction phenomena of plasmas in reactive flows is essential to optimize the discharge parameters for plasma processing applications such as fuel reforming and gas conversion. In this work, we describe the characteristic discharge modes in a CO2&nbsp;microwave plasma and assess the impact of wave coupling and thermal reactivity on the contraction dynamics. The plasma shape and gas temperature are obtained from the emission profile and the Doppler broadening of the 777 nm O(5S ←&nbsp;5P) oxygen triplet, respectively. Based on these observations, three distinct discharge modes are identified in the pressure range of 10 mbar to atmospheric pressure. We find that discharge contraction is suppressed by an absorption cut-off of the microwave field at the critical electron density, resulting in a homogeneous discharge mode below the critical transition pressure of 85 mbar. Further increase in the pressure leads to two contracted discharge modes, one emerging at a temperature of 3000 K to 4000 K and one at a temperature of 6000 K to 7000 K, which correspond to the thermal dissociation thresholds of CO2&nbsp;and CO respectively. The transition dynamics are explained by a thermo-chemical instability, which arises from the coupling of the thermal-ionization instability to heat transfer resulting from thermally driven endothermic CO2&nbsp;dissociation reactions. These results highlight the impact of thermal chemistry on the contraction dynamics of reactive molecular plasmas.</p

    CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms

    Get PDF
    Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, nevertheless, poorly understood. This work combines experiments and modeling to investigate how these aspects influence the CO production and destruction mechanisms in the vortex-stabilized CO2 microwave plasma reactor. For this, a two-dimensional axisymmetric tubular chemical kinetics model of the reactor is developed, with careful consideration of the nonuniform nature of the plasma and the vortex-induced radial turbulent transport. Energy efficiency and conversion of the dissociation process show a good agreement with the numerical results over a broad pressure range from 80 to 600 mbar. The occurrence of an energy efficiency peak between 100 and 200 mbar is associated with a discharge mode transition. The net CO production rate is inhibited at low pressure by the plasma temperature, whereas recombination of CO to CO2 dominates at high pressure. Turbulence-induced cooling and dilution of plasma products limit the extent of the latter. The maxima in energy efficiency observed experimentally around 40% are related to limits imposed by production and recombination processes. Based on these insights, feasible approaches for optimization of the plasma dissociation process are discussed.</p

    Orbital and spin physics in LiNiO2 and NaNiO2

    Full text link
    We derive a spin-orbital Hamiltonian for a triangular lattice of e_g orbital degenerate (Ni^{3+}) transition metal ions interacting via 90 degree superexchange involving (O^{2-}) anions, taking into account the on-site Coulomb interactions on both the anions and the transition metal ions. The derived interactions in the spin-orbital model are strongly frustrated, with the strongest orbital interactions selecting different orbitals for pairs of Ni ions along the three different lattice directions. In the orbital ordered phase, favoured in mean field theory, the spin-orbital interaction can play an important role by breaking the U(1) symmetry generated by the much stronger orbital interaction and restoring the threefold symmetry of the lattice. As a result the effective magnetic exchange is non-uniform and includes both ferromagnetic and antiferromagnetic spin interactions. Since ferromagnetic interactions still dominate, this offers yet insufficient explanation for the absence of magnetic order and the low-temperature behaviour of the magnetic susceptibility of stoichiometric LiNiO_2. The scenario proposed to explain the observed difference in the physical properties of LiNiO_2 and NaNiO_2 includes small covalency of Ni-O-Li-O-Ni bonds inducing weaker interplane superexchange in LiNiO_2, insufficient to stabilize orbital long-range order in the presence of stronger intraplane competition between superexchange and Jahn-Teller coupling.Comment: 33 pages, 12 postscript figures, uses iopams.sty . This article features in New Journal of Physics as part of a Focus Issue on Orbital Physics - all contributions may be freely accessed at (http://stacks.iop.org/1367-2630/6/i=1/a=E05). The published version of this article may be found at http://stacks.iop.org/1367-2630/7/12
    corecore