2,238 research outputs found
A review of the influence of root-associating fungi and root exudates on the success of invasive plants
Plant-fungal interactions are essential for understanding the distribution and abundance of plants species. Recently, arbuscular mycorrhizal fungal (AMF) partners of non-indigenous invasive plants have been hypothesized to be a critical factor influencing the invasion processes. AMF are known to improve nutrient and moisture uptake, as well as disrupt parasitic and pathogenic microbes in the host plant. Such benefits may enable invaders to establish significant and persistent populations in environments previously dominated by natives. Coupling these findings with studies on invader pathogen-disrupting root exudates is not well documented in the literature describing plant invasion strategies. The interaction effects of altered AMF associations and the impact of invader root exudates would be more relevant than understanding the AMF dynamics or the phytochemistry of successful invaders in isolation, particularly given that AMF and root exudates can have a similar role in pathogen control but function quite differently. One means to achieve this goal is to assess these strategies concurrently by characterizing both the general (mostly pathogens or commensals) and AM-specific fungal colonization patterns found in field collected root samples of successful invaders, native plants growing within dense patches of invaders, and native plants growing separately from invaders. In this review I examine the emerging evidence of the ways in which AMF-plant interactions and the production of defensive root exudates provide pathways to invasive plant establishment and expansion, and conclude that interaction studies must be pursued to achieve a more comprehensive understanding of successful plant invasion
Limits of Kansei – Kansei unlimited
This article discusses momentary limitations of the Kansei Engineering methods. There are for example the focus on the evaluation of colour and form factors, as well as the highly time consuming creation of the questionnaires. To overcome these limits we firstly suggest the integration of word lists from related research fields, like sociology and cognitive psychology on product emotions in the Kansei questionnaires. Thereafter we present a study on the wide range of Kansei attributes treated in an industrial setting. Concept words used by designers are being collected through word maps and categorized into attributes. In a third step we introduce a user-product interaction schema in which the Kansei attributes from the study are positioned. This schema unfolds potential expansion points for future applications of Kansei engineering beyond its current limits
Scalable Co-Optimization of Morphology and Control in Embodied Machines
Evolution sculpts both the body plans and nervous systems of agents together
over time. In contrast, in AI and robotics, a robot's body plan is usually
designed by hand, and control policies are then optimized for that fixed
design. The task of simultaneously co-optimizing the morphology and controller
of an embodied robot has remained a challenge. In psychology, the theory of
embodied cognition posits that behavior arises from a close coupling between
body plan and sensorimotor control, which suggests why co-optimizing these two
subsystems is so difficult: most evolutionary changes to morphology tend to
adversely impact sensorimotor control, leading to an overall decrease in
behavioral performance. Here, we further examine this hypothesis and
demonstrate a technique for "morphological innovation protection", which
temporarily reduces selection pressure on recently morphologically-changed
individuals, thus enabling evolution some time to "readapt" to the new
morphology with subsequent control policy mutations. We show the potential for
this method to avoid local optima and converge to similar highly fit
morphologies across widely varying initial conditions, while sustaining fitness
improvements further into optimization. While this technique is admittedly only
the first of many steps that must be taken to achieve scalable optimization of
embodied machines, we hope that theoretical insight into the cause of
evolutionary stagnation in current methods will help to enable the automation
of robot design and behavioral training -- while simultaneously providing a
testbed to investigate the theory of embodied cognition
Assessment of myocardial edema and area-at-risk in acute myocardial infarction by CMR: Evaluation of a novel T2-mapping method
Objectives. The goal of this study is to evaluate a T2-mapping sequence by: (i) measuring the reproducibility intra- and inter-observer variability in healthy volunteers in two separate scanning session with a T2 reference phantom; (2) measuring the mean T2 relaxation times by T2-mapping in infarcted myocardium in patients with subacute MI and compare it with patient's the gold standard X-ray coronary angiography and healthy volunteers results.
Background. Myocardial edema is a consequence of an inflammation of the tissue, as seen in myocardial infarct (MI). It can be visualized by cardiovascular magnetic resonance (CMR) imaging using the T2 relaxation time. T2-mapping is a quantitative methodology that has the potential to address the limitation of the conventional T2-weighted (T2W) imaging.
Methods. The T2-mapping protocol used for all MRI scans consisted in a radial gradient echo acquisition with a lung-liver navigator for free-breathing acquisition and affine image registration. Mid-basal short axis slices were acquired.T2-maps analyses: 2 observers semi- automatically segmented the left ventricle in 6 segments accordingly to the AHA standards. 8 healthy volunteers (age: 27 ± 4 years; 62.5% male) were scanned in 2 separate sessions. 17 patients (age : 61.9 ± 13.9 years; 82.4% male) with subacute STEMI (70.6%) and NSTEMI underwent a T2-mapping scanning session.
Results. In healthy volunteers, the mean inter- and intra-observer variability over the entire short axis slice (segment 1 to 6) was 0.1 ms (95% confidence interval (CI): -0.4 to 0.5, p = 0.62) and 0.2 ms (95% CI: -2.8 to 3.2, p = 0.94, respectively. T2 relaxation time measurements with and without the correction of the phantom yielded an average difference of 3.0 ± 1.1 % and 3.1 ± 2.1 % (p = 0.828), respectively. In patients, the inter-observer variability in the entire short axis slice (S1-S6), was 0.3 ms (95% CI: -1.8 to 2.4, p = 0.85). Edema location as determined through the T2-mapping and the coronary artery occlusion as determined on X-ray coronary angiography correlated in 78.6%, but only in 60% in apical infarcts. All except one of the maximal T2 values in infarct patients were greater than the upper limit of the 95% confidence interval for normal myocardium.
Conclusions. The T2-mapping methodology is accurate in detecting infarcted, i.e. edematous tissue in patients with subacute infarcts. This study further demonstrated that this T2-mapping technique is reproducible and robust enough to be used on a segmental basis for edema detection without the need of a phantom to yield a T2 correction factor. This new quantitative T2-mapping technique is promising and is likely to allow for serial follow-up studies in patients to improve our knowledge on infarct pathophysiology, on infarct healing, and for the assessment of novel treatment strategies for acute infarctions
Radiative transfer and type Ia supernovae spectra analysis in the context of supernovae factory.
We showed the spectrum formation in SNeIa around maximum light to be a multi-layered process involving regions from 5000 km per s to 20000 km per s, interacting not only through scattering but also through pure emission. This new understanding allowed us to introduce a new spectral indicators we called RSiSu, which can be used to measure SNeIa blue magnitudes with a precision comparable to the stretch factor. This makes it possible to independently constraint the evolutionary effect on SNeIa that are of crucial importance for high z surveys.We used the multi-purpose radiative transfer code phoenix, developed by P. Hauschildt, F. Allard and E. Baron to produce a grid of synthetic spectra sampling dates from 10 to 25 days after explosion and bolometric magnitudes from -18.0 to -19.7. We also developed an adaptive grid scheme in order to stabilize phoenix convergence.This co-supervised dissertation was conducted in collaboration between The University of Oklahoma City (USA) and University Claude Bernard of Lyon (France). It addresses the radiative transfer issue in type Ia supernovae expanding envelopes, in the context of the SupernovaFactory
A Minimal Developmental Model Can Increase Evolvability in Soft Robots
Different subsystems of organisms adapt over many time scales, such as rapid
changes in the nervous system (learning), slower morphological and neurological
change over the lifetime of the organism (postnatal development), and change
over many generations (evolution). Much work has focused on instantiating
learning or evolution in robots, but relatively little on development. Although
many theories have been forwarded as to how development can aid evolution, it
is difficult to isolate each such proposed mechanism. Thus, here we introduce a
minimal yet embodied model of development: the body of the robot changes over
its lifetime, yet growth is not influenced by the environment. We show that
even this simple developmental model confers evolvability because it allows
evolution to sweep over a larger range of body plans than an equivalent
non-developmental system, and subsequent heterochronic mutations 'lock in' this
body plan in more morphologically-static descendants. Future work will involve
gradually complexifying the developmental model to determine when and how such
added complexity increases evolvability
Engaging Armed Non-state Actors in a Landmine Ban: A Review of Geneva Call’s Action, 2000–2007
Geneva Call has been engaging armed non-state actors in a landmine ban since 2000. The Swiss-based nongovernmental organization was created in response to the realization that the landmine problem could only be comprehensively addressed if NSAs, who are the primary users of such weapons today, were included in the solution. To facilitate the process, Geneva Call has developed an innovative mechanism—the Deed of Commitment for Adherence to a Total Ban on Anti-Personnel Mines and for Cooperation in Mine Action—that enables NSAs, who cannot accede to the Ottawa Convention, to undertake to respect its norms
Combating catastrophic forgetting with developmental compression
Generally intelligent agents exhibit successful behavior across problems in
several settings. Endemic in approaches to realize such intelligence in
machines is catastrophic forgetting: sequential learning corrupts knowledge
obtained earlier in the sequence, or tasks antagonistically compete for system
resources. Methods for obviating catastrophic forgetting have sought to
identify and preserve features of the system necessary to solve one problem
when learning to solve another, or to enforce modularity such that minimally
overlapping sub-functions contain task specific knowledge. While successful,
both approaches scale poorly because they require larger architectures as the
number of training instances grows, causing different parts of the system to
specialize for separate subsets of the data. Here we present a method for
addressing catastrophic forgetting called developmental compression. It
exploits the mild impacts of developmental mutations to lessen adverse changes
to previously-evolved capabilities and `compresses' specialized neural networks
into a generalized one. In the absence of domain knowledge, developmental
compression produces systems that avoid overt specialization, alleviating the
need to engineer a bespoke system for every task permutation and suggesting
better scalability than existing approaches. We validate this method on a robot
control problem and hope to extend this approach to other machine learning
domains in the future
- …