58 research outputs found

    Liver cell line derived conditioned medium enhances myofibril organization of primary rat cardiomyocytes

    Get PDF
    Cardiomyocytes are the fundamental cells of the heart and play an important role in engineering of tissue constructs for regenerative medicine and drug discovery. Therefore, the development of culture conditions that can be used to generate functional cardiomyocytes to form cardiac tissue may be of great interest. In this study, isolated neonatal rat cardiomyocytes were cultured with several culture conditions in vitro and characterized for cell proliferation, myofibril organization, and cardiac functionality by assessing cell morphology, immunocytochemical staining, and time-lapse confocal scanning microscopy. When cardiomyocytes were cultured in liver cell line derived conditioned medium without exogenous growth factors and cytokines, the cell proliferation increased, cell morphology was highly elongated, and subsequent myofibril organization was highly developed. These developed myofibril organization also showed high level of contractibility and synchronization, representing high functionality of cardiomyocytes. Interestingly, many of the known factors in hepatic conditioned medium, such as insulin-like growth factor II (IGFII), macrophage colony-stimulating factor (MCSF), leukemia inhibitory factor (LIF), did not show similar effects as the hepatic conditioned medium, suggesting the possibility of synergistic activity of the several soluble factors or the presence of unknown factors in hepatic conditioned medium. Finally, we demonstrated that our culture system could provide a potentially powerful tool for in vitro cardiac tissue organization and cardiac function study.National Institutes of Health (U.S.) (NIH DE019024)National Institutes of Health (U.S.) (NIH grant HL092836)National Institutes of Health (U.S.) (NIH grant EB007249)Korea Institute of Science and Technology (KIST) (Institutional Program)United States. Army. Corps of Engineer

    A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories.</p> <p>Results</p> <p>We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient.</p> <p>Conclusion</p> <p>This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.</p

    A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking

    Get PDF
    Abstract In this paper, microfluidic devices containing microwells that enabled cell docking were investigated. We theoretically assessed the effect of geometry on recirculation areas and wall shear stress patterns within microwells and studied the relationship between the computational predictions and experimental cell docking. We used microchannels with 150 μm diameter microwells that had either 20 or 80 μm thickness. Flow within 80 μm deep microwells was subject to extensive recirculation areas and low shear stresses (&lt;0.5 mPa) near the well base; whilst these were only presented within a 10 μm peripheral ring in 20 μm thick microwells. We also experimentally demonstrated that cell docking was significantly higher (p&lt;0.01) in 80 μm thick microwells as compared to 20 μm thick microwells. Finally, a computational tool which correlated physical and geometrical parameters of microwells with their fluid dynamic environment was developed and was also experimentally confirmed

    Human neural stem cell growth and differentiation in a gradient-generating microfluidic device

    Get PDF
    This paper describes a gradient-generating microfluidic platform for optimizing proliferation and differentiation of neural stem cells (NSCs) in culture. Microfluidic technology has great potential to improve stem cell (SC) cultures, whose promise in cell–based therapies is limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms should provide much greater control over cell microenvironment and rapid optimization of media composition using relatively small numbers of cells. Our platform exposes cells to a concentration gradient of growth factors under continuous flow, thus minimizing autocrine and paracrine signaling. Human NSCs (hNSCs) from the developing cerebral cortex were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor (GF) mixture containing epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF). Proliferation and differentiation of NSCs into astrocytes were monitored by time-lapse microscopy and immunocytochemistry. The NSCs remained healthy throughout the entire culture period, and importantly, proliferated and differentiated in a graded and proportional fashion that varied directly with GF concentration. These concentration-dependent cellular responses were quantitatively similar to those measured in control chambers built into the device and in parallel cultures using traditional 6-well plates. This gradient-generating microfluidic platform should be useful for a wide range of basic and applied studies on cultured cells, including SCs.This paper was supported by seed grants from UCI CORCLR, UCI College of Medicine/Biomedical Engineering, and a Roman Reed Research Award from the State of California

    Microscale Technologies for Tissue Engineering

    No full text
    Microscale technologies are emerging as enabling tools for tissue engineering and biology. Here, we present our experience in developing microscale technologies to regulate cell-microenvironment interactions and generate engineered tissues. Specifically, we will describe the use of microengineered shape-controlled hydrogels to generate biomimetic 3D tissue architectures, the utility of surface patterning approaches for controlling cell-cell interactions and engineered microchannels for controlling cell-soluble factor interactions.National Institutes of Health (U.S)Charles Stark Draper LaboratoryUnited States. Army. Corps of Engineer

    A Microfluidic Device with Groove Patterns for Studying Cellular Behavior

    No full text
    We describe a microfluidic device with microgrooved patterns for studying cellular behavior. This microfluidic platform consists of a top fluidic channel and a bottom microgrooved substrate. To fabricate the microgrooved channels, a top poly(dimethylsiloxane) (PDMS) mold containing the impression of the microfluidic channels was aligned and bonded to a microgrooved substrate. Using this device, mouse fibroblast cells were immobilized and patterned within microgrooved substrates (25, 50, 75, and 100 μm wide). To study apoptosis in a microfluidic device, media containing hydrogen peroxide, Annexin V, and propidium iodide was perfused into the fluidic channel for 2 hours. We found that cells exposed to the oxidative stress became apoptotic. These apoptotic cells were confirmed by Annexin V that bound to phosphatidylserine at the outer leaflet of the plasma membrane during the apoptosis process. Using this microfluidic device with microgrooved patterns, the apoptosis process was observed in real-time and analyzed by using an inverted microscope containing an incubation chamber (37°C, 5% CO2). Therefore, this microfluidic device incorporated with microgrooved substrates could be useful for studying the cellular behavior and performing high-throughput drug screening

    Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles

    No full text
    Nanoparticles have gained large interest in a number of different fields due to their unique properties. In medical applications, for example, magnetic nanoparticles can be used for targeting, imaging, magnetically induced thermotherapy, or for any combination of the three. However, it is still a challenge to obtain narrowly dispersed, reproducible particles through a typical lab-scale synthesis when researching these materials. Here, we present a droplet capillary reactor that can be used for the synthesis of magnetic iron oxide nanoparticles. Compared to conventional batch synthesis, the particles synthesized in our droplet reactor have a narrower size distribution and a higher reproducibility. Furthermore, we demonstrate how the particle size can be changed from 5.2 ± 0.9 nm to 11.8 ± 1.7 nm by changing the reaction temperature and droplet residence time in the droplet capillary reactor
    corecore