78 research outputs found

    The Risk of Shoulder Adhesive Capsulitis in Individuals with Prediabetes and Type 2 Diabetes Mellitus: A Longitudinal Nationwide Population-Based Study

    Get PDF
    Background This study aimed to investigate the association between type 2 diabetes mellitus (T2DM) and shoulder adhesive capsulitis (AC) using a large-scale, nationwide, population-based cohort in the Republic of Korea. Methods A total of 3,471,745 subjects aged over 20 years who underwent a National Health Insurance Service medical checkup between 2009 and 2010 were included in this study, and followed from the date of their medical checkup to the end of 2018. Subjects were classified into the following four groups based on the presence of dysglycemia and history of diabetes medication: normal, prediabetes, newly diagnosed T2DM (new-T2DM), and T2DM (claim history for antidiabetic medication). The endpoint was new-onset AC during follow-up. The incidence rates (IRs) in 1,000 person-years and hazard ratios (HRs) of AC for each group were analyzed using Cox proportional hazard regression models. Results The IRs of AC were 9.453 (normal), 11.912 (prediabetes), 14.933 (new-T2DM), and 24.3761 (T2DM). The adjusted HRs of AC in the prediabetes, new-T2DM, and T2DM groups were 1.084 (95% confidence interval [CI], 1.075 to 1.094), 1.312 (95% CI, 1.287 to 1.337), and 1.473 (95% CI, 1.452 to 1.494) compared to the normal group, respectively. This secular trend of the HRs of AC according to T2DM status was statistically significant (P<0.0001). Conclusion This large-scale, longitudinal, nationwide, population-based cohort study of 3,471,745 subjects confirmed that the risk of AC increases in prediabetic subjects and is associated with T2DM status

    Risk of Parkinson disease in stroke patients: A nationwide cohort study in South Korea

    Get PDF
    BACKGROUND AND PURPOSE Previous studies have examined the risk of stroke in patients with Parkinson disease (PD), but the incidence of PD onset among stroke patients and its risk according to severity of poststroke disabilities have scarcely been investigated. This study aims to determine whether the risk of PD is increased among stroke patients using a retrospective cohort with a large population-based database. METHODS We used data collected by the Korean National Health Insurance Service from 2010 to 2018 and examined 307,361 stroke patients and 380,917 sex- and age-matched individuals without stroke to uncover the incidence of PD. Cox proportional hazards regression was used to calculate the hazard ratio (HR) and 95% confidence interval (CI), and the risk of PD was compared according to presence and severity of disability. RESULTS During 4.31 years of follow-up, stroke patients had a 1.67 times higher risk of PD compared to individuals without stroke (adjusted HR = 1.67, 95% CI = 1.57-1.78). The risk of PD was greater among stroke patients with disabilities than among those without disabilities, even after adjustment for multiple covariates (adjusted HR = 1.72, 95% CI = 1.55-1.91; and adjusted HR = 1.66, 95% CI = 1.56-1.77, respectively). CONCLUSIONS Our study demonstrated an increased risk of PD among stroke patients. Health professionals need to pay careful attention to detecting movement disorders as clues for diagnosing PD

    Flash Pulmonary Edema in a Patient With Unilateral Renal Artery Stenosis and Bilateral Functioning Kidneys

    Get PDF
    Flash pulmonary edema typically exhibits sudden onset and resolves rapidly. It generally is associated with bilateral renal artery stenosis or unilateral stenosis in conjunction with a single functional kidney. We describe a patient who presented with flash pulmonary edema treated by percutaneous therapy with stent implantation. Our case is unique in that the flash pulmonary edema occurred in the setting of unilateral renal artery stenosis with bilateral functioning kidneys

    Ginkgo biloba extract (GbE) enhances the anti-atherogenic effect of cilostazol by inhibiting ROS generation

    Get PDF
    In this study, the synergistic effect of 6-[4-(1-cyclohexyl-1H-tetrazol-5-yl) butoxy]-3,4-dihydro-2(1H)-quinolinone (cilostazol) and Ginkgo biloba extract (GbE) was examined in apolipoprotein E (ApoE) null mice. Co-treatment with GbE and cilostazol synergistically decreased reactive oxygen species (ROS) production in ApoE null mice fed a high-fat diet. Co-treatment resulted in a significantly decreased atherosclerotic lesion area compared to untreated ApoE mice. The inflammatory cytokines and adhesion molecules such as monocyte chemoattractant-1 (MCP-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), and VCAM-1 which can initiate atherosclerosis were significantly reduced by the co-treatment of cilostazol with GbE. Further, the infiltration of macrophages into the intima was decreased by co-treatment. These results suggest that co-treatment of GbE with cilostazol has a more potent anti-atherosclerotic effect than treatment with cilostazol alone in hyperlipidemic ApoE null mice and could be a valuable therapeutic strategy for the treatment of atherosclerosis

    Efficient and robust stress integration algorithm for anisotropic distortional hardening law under cross-loading with latent hardening

    No full text
    A fast and robust stress-update algorithm based on the general cutting-plane method (GCPM) was developed for a distortional hardening model, known as the HAH-DPS model. It captures the anisotropic hardening behaviors such as the Bauschinger effect, transient hardening, differential permanent softening, and cross-loading effects. The lower computational efficiency of the direct application of GCPM was rectified by considering the all-evolutionary plastic state variables during iterations. The newly proposed algorithm was formulated on the dependence of the equivalent plastic strain and the other state variables defined in the distortional hardening model. And it was implemented in a commercial finite element software using a user-defined material subroutine (UMAT). Finite element simulations under strain-path change were carried out to demonstrate the performance of the new numerical algorithm in terms of the convergence behavior locally as well as globally

    Elastic-plastic transition: A universal law

    No full text
    Although the initial stress-strain behavior in a tensile test is often characterized as linear elastic up to a yield stress and nonlinear plastic thereafter, the pre-yield transition region is known to exhibit significant curvature and hysteresis. Hundreds of high-precision loading-unloading-loading tensile tests were performed using 26 commercial sheet alloys exhibiting a wide range of strength, ductility and crystal structure. Analysis of the results reveals the following: 1.There is no significant linear elastic region; the proportional limit is ~0 MPa when measured with sufficient sensitivity. 2.Each of the hundreds of measured transitional stress-strain curves can be characterized by a single parameter, here called the “modulus reduction rate.”The corresponding equation captures ~80% of the observed variation, a factor of 3 to 6 better than a one-parameter linear approximation. 3.Most interestingly, the transitional behavior for all alloys follows a “Universal Law” requiring no fit parameters. The law depends only upon the strength of the material and its Young’s modulus, both of which are can be measured by independent tests or adopted from handbooks. The Universal Law captures ~90% of the variation represented by the one-parameter representation and eliminates the need for mechanical testing to implement and apply. The practical and theoretical implications of these results are discussed. The results provide a simple path to significantly improving applied constitutive models in the transitional regime. The consistency of the effect for such a wide range of metals and suggests that the origin of the behavior lies in the pile-up and relaxation of dislocation arrays

    Temperature-dependent constitutive modeling of a magnesium alloy ZEK100 sheet using crystal plasticity models combined with in situ high-energy X-ray diffraction experiment

    No full text
    A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed. The model was implemented in elastic-plastic self-consistent (EPSC) and crystal plasticity finite element (CPFE) frameworks for grain-scale simulations. A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy, ZEK100. The constitutive parameters were thereafter refined using the CPFE. The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200 °C. In particular, the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction, for the first time. The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy. Finally, this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures
    • …
    corecore