66 research outputs found

    May I Interrupt? Diverging Opinions on Proactive Smart Speakers

    Get PDF
    Although smart speakers support increasingly complex multi-turn dialogues, they still play a mostly reactive role, responding to user’s questions or requests. With rapid technological advances, they are becoming more capable of initiating conversations by themselves. However, before developing such proactive features, it is important to understand how people perceive different types of agent-initiated interactions. We conducted an online survey in which participants () rated 8 scenarios around proactive smart speakers on different aspects. Despite some controversy around proactive systems, we found that participants’ ratings were surprisingly positive. However, they also commented on potential issues around user privacy and agency as well as undesirable interference with ongoing (social) activities. We discuss these findings and their implications for future avenues of research on proactive smart speakers

    Understanding Circumstances for Desirable Proactive Behaviour of Voice Assistants: The Proactivity Dilemma

    Get PDF
    The next major evolutionary stage for voice assistants will be their capability to initiate interactions by themselves. However, to design proactive interactions, it is crucial to understand whether and when this behaviour is considered useful and how desirable it is perceived for different social contexts or ongoing activities. To investigate people's perspectives on proactivity and appropriate circumstances for it, we designed a set of storyboards depicting a variety of proactive actions in everyday situations and social settings and presented them to 15 participants in interactive interviews. Our findings suggest that, although many participants see benefits in agent proactivity, such as for urgent or critical issues, there are concerns about interference with social activities in multi-party settings, potential loss of agency, and intrusiveness. We discuss our implications for designing voice assistants with desirable proactive features

    Teichm\"uller's problem in space

    Full text link
    Quasiconformal homeomorphisms of the whole space Rn, onto itself normalized at one or two points are studied. In particular, the stability theory, the case when the maximal dilatation tends to 1, is in the focus. Our main result provides a spatial analogue of a classical result due to Teichm\"uller. Unlike Teichm\"uller's result, our bounds are explicit. Explicit bounds are based on two sharp well-known distortion results: the quasiconformal Schwarz lemma and the bound for linear dilatation. Moreover, Bernoulli type inequalities and asymptotically sharp bounds for special functions involving complete elliptic integrals are applied to simplify the computations. Finally, we discuss the behavior of the quasihyperbolic metric under quasiconformal maps and prove a sharp result for quasiconformal maps of R^n \ {0} onto itself.Comment: 25 pages, 2 figure

    Alleviation of migraine symptoms by application of repetitive peripheral magnetic stimulation to myofascial trigger points of neck and shoulder muscles - A randomized trial

    Get PDF
    Migraine is a burdensome disease with an especially high prevalence in women between the age of 15 and 49 years. Non-pharmacological, non-invasive therapeutic methods to control symptoms are increasingly in demand to complement a multimodal intervention approach in migraine. Thirty-seven subjects (age: 25.0 +/- 4.1 years;36 females) diagnosed with high-frequency episodic migraine who presented at least one active myofascial trigger point (mTrP) in the trapezius muscles and at least one latent mTrP in the deltoid muscles bilaterally prospectively underwent six sessions of repetitive peripheral magnetic stimulation (rPMS) over two weeks. Patients were randomly assigned to receive rPMS applied to the mTrPs of the trapezius (n = 19) or deltoid muscles (n = 18). Whereas the trapezius muscle is supposed to be part of the trigemino-cervical complex (TCC) and, thus, involved in the pathophysiology of migraine, the deltoid muscle was not expected to interfere with the TCC and was therefore chosen as a control stimulation site. The headache calendar of the German Migraine and Headache Society (DMKG) as well as the Migraine Disability Assessment (MIDAS) questionnaire were used to evaluate stimulation-related effects. Frequency of headache days decreased significantly in both the trapezius and the deltoid group after six sessions of rPMS (trapezius group: p = 0.005;deltoid group: p = 0.003). The MIDAS score decreased significantly from 29 to 13 points (p = 0.0004) in the trapezius and from 31 to 15 points (p = 0.002) in the deltoid group. Thus, rPMS applied to mTrPs of neck and shoulder muscles offers a promising approach to alleviate headache frequency and symptom burden. Future clinical trials are needed to examine more profoundly these effects, preferably using a sham-controlled setting

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde

    Health-Related Quality of Life after Pediatric Traumatic Brain Injury: A Quantitative Comparison between Children’s and Parents’ Perspectives of the QOLIBRI-KID/ADO Questionnaire

    Get PDF
    Pediatric health-related quality of life (HRQoL) as a measure of subjective wellbeing and functioning has received increasing attention over the past decade. HRQoL in children and adolescents following pediatric traumatic brain injury (pTBI) has been poorly studied, and performing adequate measurements in this population is challenging. This study compares child/adolescent and parent reports of HRQoL following pTBI using the newly developed Quality of Life after Brain Injury in Children and Adolescents (QOLIBRI-KID/ADO) questionnaire. Three hundred dyads of 8–17-year-old children/adolescents and their parents were included in the study. The parent–child agreement, estimated using intraclass correlation coefficients and Cohen’s κ, displayed poor to moderate concordance. Approximately two-fifths of parents (39.3%) tended to report lower HRQoL for their children/adolescents on the total QOLIBRI-KID/ADO score. At the same time, about one-fifth (21.3%) reported higher HRQoL Total scores for their children/adolescents. The best agreement for parents rating adolescents (aged 13–17 years) was found in terms of the Total score and the Cognition and Self scale scores. To date, parent-reported HRQoL has been the preferred choice in pediatric research after TBI. However, with a parent–child disagreement of approximately 60%, our results highlight the importance of considering self-reports for children/adolescents capable of answering or completing the HRQoL measures

    Monogenic variants in dystonia: an exome-wide sequencing study

    Get PDF
    Background Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. Methods For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. Findings We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222;excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. Interpretation In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations

    FFT based investigations on light flicker in new lighting systems

    No full text
    These days we live the transition in home and public lighting to Solid State Lighting (SSL) and possible others as Organic LED (OLED) and new developed gas discharge lamps as Cold Cathode Fluorescent Lamps (CCFL). Most of the new lamps are marketed to be retrofitted in existing sockets for luminaires as E14 or E27. Beside major benefits on energy consumption and environment protection, there are some concerns about the biological and psychological effects of light flicker produced by these new lamps, especially in the SSL case [1]. We mention here the effects that range from fatigue to headache and epilepsy. We propose in this paper a quantitative investigation on flicker, based on FFT of the acquired photometric data. This way, not only the flicker amplitude, but also the frequency and the human perception is taken into account. Based on the proposed processing, different lamps with different technologies and flicker level are consistently compared
    • …
    corecore