24 research outputs found

    Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age

    Get PDF
    Objectives: Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. Methods: This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Results: Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). Discussion: This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant

    Linking a Multi-Compartment T2 Model to Diffusion Microstructure in Prostate Cancer

    Get PDF
    This work develops a multi-compartment T2 model for prostate imaging. We investigate whether this model can provide information about differences in tissue microstructure, such as those between normal prostate tissue and tumour, by comparing it to the VERDICT diffusion model6. The high correlations found between a number of the parameters suggest that the proposed model is capable of detecting some microstructural differences. In the future this method may be able to provide different and complementary microstructural information to current diffusion models

    Quantitative ultrasound texture analysis of fetal lungs to predict neonatal respiratory morbidity

    Get PDF
    Objective To develop and evaluate the performance of a novel method for predicting neonatal respiratory morbidity based on quantitative analysis of the fetal lung by ultrasound. Methods More than 13¿000 non-clinical images and 900 fetal lung images were used to develop a computerized method based on texture analysis and machine learning algorithms, trained to predict neonatal respiratory morbidity risk on fetal lung ultrasound images. The method, termed ‘quantitative ultrasound fetal lung maturity analysis’ (quantusFLM™), was then validated blindly in 144 neonates, delivered at 28¿+¿0 to 39¿+¿0¿weeks' gestation. Lung ultrasound images in DICOM format were obtained within 48¿h of delivery and the ability of the software to predict neonatal respiratory morbidity, defined as either respiratory distress syndrome or transient tachypnea of the newborn, was determined. Results Mean (SD) gestational age at delivery was 36¿+¿1 (3¿+¿3) weeks. Among the 144 neonates, there were 29 (20.1%) cases of neonatal respiratory morbidity. Quantitative texture analysis predicted neonatal respiratory morbidity with a sensitivity, specificity, positive predictive value and negative predictive value of 86.2%, 87.0%, 62.5% and 96.2%, respectively. Conclusions Quantitative ultrasound fetal lung maturity analysis predicted neonatal respiratory morbidity with an accuracy comparable to that of current tests using amniotic fluid.Peer ReviewedPostprint (published version

    Feasibility of VERDICT-MRI for non-invasive characterisation of rectal cancer microstructure

    Get PDF

    Histological Validation of in-vivo VERDICT MRI for Prostate using 3D Personalised Moulds

    Get PDF
    VERDICT analysis can successfully distinguish benign from malignant prostate tissue in-vivo showing promising results as a cancer diagnostic tool. However, the accuracy with which model parameters reflect the underlying tissue characteristics is unknown. In this study, we quantitatively compare the intracellular, extracellular-extravascular and vascular volume fractions derived from in-vivo VERDICT MRI against histological measurements from prostatectomies. We use 3D-printed personalised moulds designed from in-vivo MRI that help preserve the orientation and location of the gland and aid histological alignment. Results from the first samples using the 3D mould pipeline show good agreement between in-vivo VERDICT estimates and histology

    INNOVATE: A prospective cohort study combining serum and urinary biomarkers with novel diffusion-weighted magnetic resonance imaging for the prediction and characterization of prostate cancer

    Get PDF
    BACKGROUND: Whilst multi-parametric magnetic resonance imaging (mp-MRI) has been a significant advance in the diagnosis of prostate cancer, scanning all patients with elevated prostate specific antigen (PSA) levels is considered too costly for widespread National Health Service (NHS) use, as the predictive value of PSA levels for significant disease is poor. Despite the fact that novel blood and urine tests are available which may predict aggressive disease better than PSA, they are not routinely employed due to a lack of clinical validity studies. Furthermore approximately 40% of mp-MRI studies are reported as indeterminate, which can lead to repeat examinations or unnecessary biopsy with associated patient anxiety, discomfort, risk and additional costs. METHODS AND ANALYSIS: We aim to clinically validate a panel of minimally invasive promising blood and urine biomarkers, to better select patients that will benefit from a multiparametric prostate MRI. We will then test whether the performance of the mp-MRI can be improved by the addition of an advanced diffusion-weighted MRI technique, which uses a biophysical model to characterise tissue microstructure called VERDICT; Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours. INNOVATE is a prospective single centre cohort study in 365 patients. mpMRI will act as the reference standard for the biomarker panel. A clinical outcome based reference standard based on biopsy, mp-MRI and follow-up will be used for VERDICT MRI. We expect the combined effect of biomarkers and VERDICT MRI will improve care by better detecting aggressive prostate cancer early and make mp-MRI before biopsy economically viable for universal NHS adoption. ETHICS AND DISSEMINATION: INNOVATE received UK Research Ethics Committee approval on 23rd December 2015 by the NRES Committee London—Surrey Borders with REC reference 15/LO/0692. REGISTRATION DETAILS: INNOVATE is registered on ClinicalTrials.gov, with reference NCT0268927
    corecore