4 research outputs found

    Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry.

    Get PDF
    International audienceBACKGROUND: Oligosaccharidoses, which belong to the lysosomal storage diseases, are inherited metabolic disorders due to the absence or the loss of function of one of the enzymes involved in the catabolic pathway of glycoproteins and indirectly of glycosphingolipids. This enzymatic deficiency typically results in the abnormal accumulation of uncompletely degraded oligosaccharides in the urine. Since the clinical features of many of these disorders are not specific for a single enzyme deficiency, unambiguous screening is critical to limit the number of costly enzyme assays which otherwise must be performed. METHODS: Here we provide evidence for the advantages of using a MALDI-TOF/TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometric (MS) method for screening oligosaccharidoses. Urine samples from previously diagnosed patients or from unaffected subjects were randomly divided into a training set and a blind testing set. Samples were directly analyzed without prior treatment. RESULTS: The characteristic MS and MS/MS molecular profiles obtained allowed us to identify fucosidosis, aspartylglucosaminuria, GM1 gangliosidosis, Sandhoff disease, α-mannosidosis, sialidosis and mucolipidoses type II and III. CONCLUSIONS: This method, which is easily run in less than 30 minutes, is performed in a single step, and is sensitive and specific. Invaluable for clinical chemistry purposes this MALDI-TOF/TOF mass spectrometry procedure is semi-automatizable and suitable for the urinary screening of oligosacharidoses

    UBTD1 regulates ceramide balance and endolysosomal positioning to coordinate EGFR signaling

    No full text
    International audienceTo adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that ubiquitin domain-containing protein 1 (UBTD1) plays a crucial role in both the epidermal growth factor receptor (EGFR) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through N-acylsphingosine amidohydrolase 1 (ASAH1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR. On the other hand, UBTD1, via the ubiquitination of Sequestosome 1 (SQSTM1/p62) by RNF26 and endolysosome positioning, participates in the lysosomal degradation of EGFR. The coordination of these two ubiquitin-dependent processes contributes to the control of the duration of the EGFR signal. Moreover, we showed that UBTD1 depletion exacerbates EGFR signaling and induces cell proliferation emphasizing a hitherto unknown function of UBTD1 in EGFR-driven human cell proliferation

    Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency

    Get PDF
    International audienceWe report two children, born from consanguineous parents, who presented with early-onset refractory epilepsy associated with psychomotor delay, failure to thrive, blindness and deafness. Polarographic and spectrophotometric analyses in fibroblasts and liver revealed a respiratory chain (RC) dysfunction. Surprisingly, we identified a homozygous nonsense mutation in the GM3 synthase gene by using exome sequencing. GM3 synthase catalyzes the formation of GM3 ganglioside from lactosylceramide, which is the first step in the synthesis of complex ganglioside species. Mass spectrometry analysis revealed that the complete absence of GM3 ganglioside and its biosynthetic derivatives was associated with an upregulation of the alternative globoside pathway in fibroblasts. The accumulation of Gb3 and Gb4 globosides likely has a role in RC dysfunction and in the decrease of mitochondrial membrane potential leading to apoptosis, which we observed in fibroblasts. We show for the first time that GM3 synthase deficiency, responsible for early-onset epilepsy syndrome, leads to a secondary RC dysfunction. Our study highlights the role of secondary mitochondrial disorders that can interfere with the diagnosis and the evolution of other metabolic diseases.European Journal of Human Genetics advance online publication, 19 September 2012; doi:10.1038/ejhg.2012.202.</p
    corecore