1,981 research outputs found

    Aspects of the immune system that impact brain function.

    Get PDF
    The conditions required for effective immune responses to viral or bacterial organisms and chemicals of exogenous origin and to intrinsic molecules of abnormal configuration, are briefly outlined. This is followed by a discussion of endocrine and environmental factors that can lead to excessive continuation of immune activity and persistent elevation of inflammatory responses. Such disproportionate activity becomes increasingly pronounced with aging and some possible reasons for this are considered. The specific vulnerability of the nervous system to prolonged immune events is involved in several disorders frequently found in the aging brain. In addition of being a target for inflammation associated with neurodegenerative disease, the nervous system is also seriously impacted by systemically widespread immune disturbances since there are several means by which immune information can access the CNS. The activation of glial cells and cells of non-nervous origin that form the basis of immune responses within the brain, can occur in differing modes resulting in widely differing consequences. The events underlying the relatively frequent occurrence of derangement and hyperreactivity of the immune system are considered, and a few potential ways of addressing this common condition are described

    Nanoparticles and Colloids as Contributing Factors in Neurodegenerative Disease

    Get PDF
    This review explores the processes underlying the deleterious effects of the presence of insoluble or colloidal depositions within the central nervous system. These materials are chemically unreactive and can have a prolonged residence in the brain. They can be composed of mineral or proteinaceous materials of intrinsic or exogenous origin. Such nanoparticulates and colloids are associated with a range of slow-progressing neurodegenerative states. The potential common basis of toxicity of these materials is discussed. A shared feature of these disorders involves the appearance of deleterious inflammatory changes in the CNS. This may be due to extended and ineffective immune responses. Another aspect is the presence of excess levels of reactive oxygen species within the brain. In addition with their induction by inflammatory events, these may be further heightened by the presence of redox active transition metals to the large surface area afforded by nanoparticles and amphipathic micelles

    Impact of Gene-Gender Effects of Adrenergic Polymorphisms on Hypothalamic-Pituitary-Adrenal Axis Activity in Depressed Patients

    Get PDF
    Objective: There is overwhelming evidence that activation of the hypothalamic-pituitary-adrenal (HPA) system plays a major role in depression and cardiovascular disease in genetically susceptible individuals. We hypothesized that due to the multiple interactions between the sympathetic and the HPA systems via adrenoceptors, polymorphisms in these genes could have an impact on HPA axis activity in major depression. Methods: Using the dexamethasone/corticotrophin-releasing hormone (DEX/CRH) test, we investigated the association of alpha 2-adrenoceptor (ADRA2A -1291C -> G) and the beta 2-adrenoceptor gene (ADRB2 Arg16Gly) in 189 patients with major depression during the acute state of the disease and after remission. Results: Male ADRA2A -1291G allele homozygotes showed significant pretreatment HPA axis hyperactivity, with increased adrenocorticotropin (ACTH; F = 4.9, d.f. = 2, p = 0.009) and cortisol responses (F = 6.4, d.f. = 2, p = 0.003). In contrast, female ADRB2 Arg/Arg homozygotes had increased pretreatment ACTH (F = 7.17, d.f. = 2, p = 0.001) and cortisol (F = 8.95, d.f. = 2, p = 0.000) levels. Interestingly, in the respective genotypes, the stress hormones remained elevated in the second DEX/CRH test, despite a reduction in depressive symptoms. Conclusions: This study provides evidence that, depending on gender and polymorphisms, there is continuous HPA axis overdrive in a proportion of patients irrespective of the status of depression. Considering the importance of stress hormones for cardiovascular disorders, our data might suggest that these patients are at high risk of comorbidity between depression and cardiovascular disorders. Copyright (c) 2008 S. Karger AG, Base

    Melatonin Alters Age-Related Changes in Transcription Factors and Kinase Activation

    Get PDF
    Male mice were fed 40 ppm melatonin for 2 months prior to sacrifice at age 26 months, and compared with both 26 and 4 month-old untreated controls. The nuclear translocation of NF-κB increased with age in both brain and spleen and this was reversed by melatonin only in brain. Another transcription factor, AP-1 was increased with age in the spleen and not in brain and this could be blocked by melatonin treatment. The fraction of the active relative to the inactive form of several enabling kinases was compared. The proportion of activated ERK was elevated with age in brain and spleen but this change was unresponsive to melatonin. A similar age-related increase in glial fibrillary acidic protein (GFAP) was also refractory to melatonin treatment. The cerebral melatonin M1 receptor decreased with age in brain but increased in spleen. The potentially beneficial nature of melatonin for the preservation of brain function with aging was suggested by the finding that an age-related decline in cortical synaptophysin levels was prevented by dietary melatonin
    corecore