24 research outputs found

    A method for determining the central lateral position of a spray swath

    Get PDF
    Die Genauigkeit zweier Systeme, die bei der Applikation mit Luftfahrzeugen durch Versatz der Flugbahnen den Einfluss des Seitenwindes auf die Verteilung der Spritzflüssigkeit kompensieren sollen, wurde experimentell ermit­telt. Dabei wurden sehr unterschiedliche Verteilungsmuster festgestellt, so dass eine geeignete Berechnung der Position des Behandlungsstreifens gefunden werden musste. Zur Beschreibung der Position des Behandlungsstreifens wurde, in Anlehnung an die Berechnung des Schwerpunktes in der Mechanik, der Belagsschwerpunkt ermittelt. Die Berechnung wird im Beitrag beschrieben.An aerial swath offset experiment was conducted to measure the accuracy of two commercial navigational systems for compensation of cross wind influence. The swaths produced in this experiment presented many different deposit patterns. A method was required to determine a position for the differing distributions on the ground. This paper describes a possible solution of this problem. Equivalent to the centre of gravity in mechanics, the use of a Centre of Deposition calculation proved appropriate. The way of calculation is exemplified

    The influence of Unmanned Agricultural Aircraft System design on spray drift

    Get PDF
    Es wurden Feldversuche durchgeführt, um den Einfluss der Bauart von unbemannten Luftfahrzeugen (Unmanned Agricultural Aircraft Systems, UAAS) auf das Bodense­diment der Abdrift im Ackerbau festzustellen. Zudem wurde die Verteilung der Spritzflüssigkeit auf der Behand­lungsfläche ermittelt. Zusätzlich wurde als mögliche Alternative zur Messung des Bodensediments auch das luftgetragene Abdriftpotenzial am Rand der Behandlungsfläche bestimmt.Vier verschiedene UAAS dreier unterschiedlicher Bauarten, ein 1-Rotor-, ein 6-Rotor- und zwei 8-Rotor-UAAS wurden untersucht. Alle UAAS hatten unterschiedliche Spritzgestänge, wurden aber jeweils mit gleichen Düsen bestückt: Lechler TR 80–0067 und Lechler IDK 120–015, mit denen jeweils 40 l ha–1 bzw. 75 l ha–1 appliziert wurden.Weder für die UAAS-Bauart noch für die Düse konnte ein Einfluss auf die Verteilung der Spritzflüssigkeit auf der Behandlungsfläche festgestellt werden; der Variationskoeffizient der Querverteilung lag generell zwischen 40% und 50%.Die Untersuchungsergebnisse zeigen, dass der Einfluss der UAAS-Bauart gegenüber dem Einfluss der Düse vernachlässigbar ist. Wie bei anderen Pflanzenschutzgeräten verursachte die Hohlkegeldüse TR 80–0067 wesentlich mehr Abdrift als die Luftinjektor-Flachstrahldüse IDK 120–015. Bei beiden Düsentypen lag das Bodensediment wesentlich über den in Deutschland für die Risikobewertung im Ackerbau verwendeten Abdrifteckwerten.Zwischen dem Bodensediment und dem am Rand der Behandlungsfläche ermittelten luftgetragenen Abdriftpotenzial wurde eine enge Korrelation gefunden. Somit scheint das Abdriftpotenzial eine brauchbare Alternative, zumindest für den Vergleich unterschiedlicher Appli­kationstechniken, darzustellen. Für gesicherte Aussagen hierzu sind jedoch weitere Untersuchungen notwendig.Field experiments were conducted to determine the influence of the Unmanned Agricultural Aircraft Systems (UAAS) design on spray drift sediment during a common arable field application in consideration of the spray deposit distribution. In addition, airborne drift collectors were used to determine the initial drift potential as a possible alternative for characterising the spray drift.Four models of UAAS representing three different designs, one single rotor, one 6-rotor and two 8-rotor designs, were involved in the study. All UAASs where equipped with individual spraying systems but the same nozzles were used: Lechler TR 80–0067 and Lechler IDK 120–015, providing nominal application rates of 40 l ha–1 and 75 l ha–1, respectively.There was no influence of the UAAS design or the nozzle type on the spray distribution quality on the treated area. In general, the coefficient of spray deposit variation was 40% to 50%.The results of the study show that the effect of the UAAS design on spray drift was relatively low compared to the influence of the type of nozzles used. As for other application techniques, the conventional hollow cone nozzle TR 80–0067 produced much more spray drift compared to the air induction flat fan nozzle IDK 120–015. With both types of nozzles, the ground sediment of spray drift was much higher than the standard drift values used by German authorities for drift risk assessments for boom sprayers in arable crops.A good correlation was found between drift sediment and airborne drift potential. As the latter seems to be a suitable alternative, at least for comparing different spraying systems, further studies should be conducted also for other application techniques

    Comparative analysis of the Potter Tower and a new Track Sprayer for the application of residual sprays in the laboratory

    Get PDF
    Background: Efforts to evaluate the residual efficacy of new indoor residual spraying (IRS) formulations have identified limitations with the industry standard laboratory sprayer, the Potter Spray Tower (PT). Calibrating the PT can be time-consuming, and the dosing of surfaces may not be as accurate or uniform as previously assumed. Methods: To address these limitations, the Micron Horizontal Track Sprayer with Spray Cabinet (TS) was developed to provide higher efficiency, ease of operation and deposition uniformity equal to or better than the PT. A series of studies were performed using a fluorescent tracer and three IRS formulations (Actellic® 300CS, K-Othrine WG250 and Suspend PolyZone) sprayed onto surfaces using either the PT or the TS. Results: Deposition volumes could be accurately calibrated for both spray systems. However, the uniformity of spray deposits was higher for the TS compared to the PT. Less than 12% of the volume sprayed using the PT reaches the target surface, with the remaining 88% unaccounted for, presumably vented out of the fume hood or coating the internal surfaces of the tower. In contrast, the TS deposits most of the spray on the floor of the spray chamber, with the rest contained therein. The total sprayed surface area in one run of the TS is 1.2 m2, and the operational zone for spray target placement is 0.7 m2, meaning that 58% of the applied volume deposits onto the targets. The TS can treat multiple surfaces (18 standard 15 × 15 cm tiles) in a single application, whereas the PT treats one surface at a time and a maximum area of around 0.0225 m2. An assessment of the time taken to perform spraying, including the setup, calibration and cleaning, showed that the cost of application using the TS was around 25–35 × less per tile sprayed. Standard operating procedures (SOPs) for calibration and use of both the Potter Tower and Track Sprayer have been developed. Conclusions: Overall, the TS represents a significant improvement over the PT in terms of the efficiency and accuracy of IRS formulation applications onto test substrates and offers a useful additional tool for researchers and manufacturers wanting to screen new active ingredients or evaluate the efficacy of IRS or other sprayable formulations for insect control

    The biological effect of cage design corrected for reductions in spray penetration

    No full text
    In-field measures of physical spray concentration do not tend to correlate well with caged insect mortality data. This is partly due to the reduced penetration of the spray into the cage. Spray penetration is hindered by the structure of the cage. Wind tunnel studies were conducted to investigate the accuracy of those calculations developed to correct for filtration levels in caged mosquito bioassays. Zenivex E20 (Etofenprox) was applied at rates ranging from an LD10 to an LD90. Three cage types were used, each with different penetration levels. The dose approaching the cage was converted to the dose entering the cage using cage penetration data from previous research. The penetration conversion factor returned a data set that directly correlated dose with mosquito mortality (R2 = = 0.918). The mortality percent was a function of the dose within the cage. The mesh type acted as a regulator. Although the conversion factor was effective, the differences between cages was not always significant due to within-group variation

    Evaluation of Aerial Spray Technologies for Adult Mosquito Control Applications

    No full text
    Spray droplet size has long been recognized as an important variable that applicators of vector control sprays must be aware of to make the most effective spray applications. Researchers and applicators have several different techniques available to assess spray droplet size from spray nozzles. The objective of this study was to compare the droplet size spectrum produced by three nozzles commonly used in vector control in a high-speed wind tunnel, when characterized using three different laser-based droplet size measurement systems. Three droplet sizing systems: Malvern Spraytec laser diffraction, Sympatec HELOS laser diffraction, and TSI Phase Doppler Particle Analyzer (PDPA), were simultaneously operated, but under different operating conditions, to measure the spray droplet size-spectra for three spray nozzles. The three atomizers: a TeeJet® 8001E even flat fan nozzle, a BETE® PJ high pressure fog nozzles, and a Micronair ® AU5000 rotary atomizer were evaluated in a high speed wind tunnel at airspeeds of 53 and 62 m/s (120 and 140 mph). Based on the results of this work, only the BETE® PJ high pressure fog nozzles met the label requirements for both Fyfanon® and Anvil®. While the other nozzle might met the Dv0.5 (VMD - volume median diameter) requirement for Fyfanon®, the resulting Dv0.9 values exceeded labeled size restrictions. When applying Anvil with the BETE PJ high pressure fog nozzles, it is important to use the smaller two orifice sizes. The larger sizes tended to result in Dv0.9 values that exceeded label recommendations
    corecore