69 research outputs found

    The β-cell/EC axis: how do islet cells talk to each other?

    Get PDF
    Author version made available in accordance with the publisher's policy.Within the pancreatic islet, the beta cell represents the ultimate biosensor. Its central function is to accurately sense glucose levels in the blood, and consequently release appropriate amounts of insulin. As the only cell type capable of insulin production, the beta cell must balance this crucial workload with self-preservation and, when required, regeneration. Evidence suggests that the beta cell has an important ally in intra-islet endothelial cells. As well as providing a conduit for delivery of the primary input stimulus (glucose) and dissemination of its most important effector (insulin), intra-islet blood vessels deliver oxygen to these dense clusters of metabolically active cells. Furthermore, it appears that endothelial cells directly impact insulin gene expression, secretion and beta cell survival. This review discusses the molecules and pathways involved in the crosstalk between beta cells and intra-islet endothelial cells. The evidence supporting the intra-islet endothelial cell as an important partner for beta cell function is examined to highlight the relevance of this axis in the context of type 1 and type 2 diabetes. Recent work which has established the potential of endothelial cells or their progenitors to enhance the reestablishment of glycaemic control following pancreatic islet transplantation in animal models is discussed

    Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs

    Get PDF
    Copyright © 2015 Amanda L. Aloia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection

    Vasculogenic mimicry in malignant mesothelioma: an experimental and immunohistochemical analysis

    Get PDF
    SummaryVasculogenic mimicry, the process in which cancer cells form angiomatoid structures independent of or in addition to host angiogenesis has been recorded in several otherwise non-endothelial malignant neoplasms. This study describes evidence of routine vascular mimicry by human mesothelioma cell lines in vitro, when the cell lines are cultured alone or co-cultured with human umbilical vascular endothelial cells, with the formation of angiomatoid tubular networks. Vasculogenic mimicry is also supported by immunohistochemical demonstration of human-specific anti-mitochondria antibody labelling of tumour-associated vasculature of human mesothelioma cells xenotransplanted into nude mice, and by evidence of vascular mimicry in some biopsy samples of human malignant mesotheliomas. These studies show mosaic interlacing of cells that co-label or label individually for immunohistochemical markers of endothelial and mesothelial differentiation. If vascular mimicry in mesothelioma can be characterised more fully, this may facilitate identification of more specific and targeted therapeutic approaches such as anti-angiogenesis in combination with chemotherapy and immunotherapy or other therapeutic approaches

    Endothelial Progenitor Cells Enhance Islet Engraftment, Influence b-Cell Function, and Modulate Islet Connexin 36 Expression

    Get PDF
    This article has been made available by the publisher under a Creative Commons Attribution Non-Commercial (CC BY NC) license. https://www.cognizantcommunication.com/general-subscription-policies/open-access-policy Accessed 10/2/15The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic β-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the β-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study

    The development of tumour vascular networks

    Get PDF
    The growth of solid tumours relies on an ever-increasing supply of oxygen and nutrients that are delivered via vascular networks. Tumour vasculature includes endothelial cell lined angiogenesis and the less common cancer cell lined vasculogenic mimicry (VM). To study and compare the development of vascular networks formed during angiogenesis and VM (represented here by breast cancer and pancreatic cancer cell lines) a number of in vitro assays were utilised. From live cell imaging, we performed a large-scale automated extraction of network parameters and identified properties not previously reported. We show that for both angiogenesis and VM, the characteristic network path length reduces over time; however, only endothelial cells increase network clustering coefficients thus maintaining small-world network properties as they develop. When compared to angiogenesis, the VM network efficiency is improved by decreasing the number of edges and vertices, and also by increasing edge length. Furthermore, our results demonstrate that angiogenic and VM networks appear to display similar properties to road traffic networks and are also subject to the well-known Braess paradox. This quantitative measurement framework opens up new avenues to potentially evaluate the impact of anti-cancer drugs and anti-vascular therapies

    Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs

    Get PDF
    One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection

    Desmoglein-2 as a cancer modulator: friend or foe?

    Get PDF
    Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer

    Dengue Virus Infection of Primary Endothelial Cells Induces Innate Immune Responses, Changes in Endothelial Cells Function and Is Restricted by Interferon-Stimulated Responses

    Get PDF
    This is a peer reviewed post print version, the final publication is available from Mary Ann Liebert, Inc., publishers http://dx.doi.org/10.1089/jir.2014.0195. A 12 month embargo from date of publication has been placed on this article in accordance with the publishers self-archiving policy. The article will be available from 6 August 2016.Although endothelial cell (EC) infection is not widespread during dengue virus (DENV) infection in vivo, the endothelium is the site of the pathogenic effects seen in severe DENV disease. In this study, we investigated DENV infection of primary EC and defined factors that influence infection in this cell type. Consistent with in vivo findings where EC infection is infrequent, only 3%–15% of EC became productively DENV-2-infected in vitro. This low level infection could not be attributed to inhibition by heparin, EC donor variation, heterogeneity, or biological source. DENV-infection of EC was associated with induction of innate immune responses, including increased STAT1 protein, STAT1- phosphorylation, interferon (IFN)-β, OAS-1, IFIT-1/ISG56, and viperin mRNA. Antibody blocking of IFN-β inhibited the induction of OAS1, IFIT1/ISG56, and viperin while shRNA knockdown of viperin enhanced DENV-infection in EC. DENV-infection of EC resulted in increased activity of sphingosine kinase 1, a factor important in maintaining vascular integrity, and altered basal and stimulated changes in barrier integrity of DENV-infected EC monolayers. Thus, DENV productively infects only a small percentage of primary EC but this has a major influence on induction of IFN-β driven innate immune responses that can restrict infection while the EC themselves are functionally altered. These changes may have important consequences for the endothelium and are reflective of pathogenic changes associated with vascular leakage, as seen in DENV disease
    • …
    corecore