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Within the pancreatic islet, the beta cell represents the ultimate biosensor. Its central function is 

to accurately sense glucose levels in the blood, and consequently release appropriate amounts of 

insulin. As the only cell type capable of insulin production, the beta cell must balance this crucial 

workload with self-preservation and, when required, regeneration. Evidence suggests that the 

beta cell has an important ally in intra-islet endothelial cells. As well as providing a conduit for 

delivery of the primary input stimulus (glucose) and dissemination of its most important effector 

(insulin), intra-islet blood vessels deliver oxygen to these dense clusters of metabolically active 

cells. Furthermore, it appears that endothelial cells directly impact insulin gene expression, 

secretion and beta cell survival.  

This review discusses the molecules and pathways involved in the crosstalk between beta cells 

and intra-islet endothelial cells. The evidence supporting the intra-islet endothelial cell as an 

important partner for beta cell function is examined to highlight the relevance of this axis in the 

context of type 1 and type 2 diabetes. Recent work which has established the potential of 

endothelial cells or their progenitors to enhance the reestablishment of glycaemic control 

following pancreatic islet transplantation in animal models is discussed. 

THE ISLETS OF LANGERHANS 

The pancreatic islet - the ultimate biosensor 

Distributed throughout the exocrine pancreas, the islets of Langerhans house the central regulator 

of glucose homeostasis - the beta cell. Beta cells are the major cellular component of islets, 
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making up approximately 80% of islet cellularity in mice, and 50-60% in humans. The remainder 

of the islet comprises other endocrine cells (including glucagon-secreting alpha cells, 

somatostatin-secreting delta cells, pancreatic polypeptide-secreting gamma cells, ghrelin-

producing epsilon cells), as well as endothelial cells and supportive cells including pericytes.  

 

The body’s response to glycaemic load is extremely rapid – circulating plasma insulin levels 

increase within 1 minute of ingestion of food as beta cells release preformed insulin from 

granules. In addition to this rapid first phase response, islets continue to release insulin in a 

pulsatile fashion over a longer period (second phase response) in the presence of a persisting 

glucose stimulus. Pulsatile insulin release is coordinated within the islet and throughout the 

pancreas by intercellular gap junctions and ATP spreading. Pancreatic hormone secretion is 

additionally regulated by the autonomic nervous system and endocrine cells in murine islets are 

heavily innervated by parasympathetic and sympathetic neurons. Human islets, on the other 

hand, are only sparsely innervated, with most neurons contacting intra-islet smooth muscle cells 

(1). Thus, neuronal control of human beta cells may be indirect and mediated via the vasculature. 

The exquisite regulation of blood glucose is vital for the proper function of multiple systems – 

including neuronal, cardiovascular and renal. Microvascular beds throughout the body are 

sensitive to glucose-mediated toxicity. In diabetes, hyperglycaemia leads progressively to 

associated macrovascular and microvascular complications including retinopathy, nephropathy, 

neuropathy and cardiovascular disease (2).  

 

Intra-islet endothelial cells 
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Pancreatic islets are highly vascularised and receive 10% of pancreatic blood flow despite 

comprising only 1-2% of tissue mass. Small islets (<100 µm) are incorporated into the 

microcapillary beds of the exocrine pancreas, while larger islets are supplied by up to three 

dedicated arterioles. The vasculature is crucial for pancreatic development, largely via VEGF-A 

mediated signals. Intra-islet endothelial cells are thin and highly fenestrated, allowing for 

sensitive detection of blood glucose levels and rapid dissemination of secreted insulin (Figure 1), 

and it has been postulated that every beta cell is in contact with a vascular endothelial cell. Islet 

cellular arrangement differs among species. While rodent islets classically consist of a beta cell 

core surrounded by a non-beta cell mantle, the structure of human islets is more irregular and 

varies with islet size and perfusion. One in-depth study of human islets proposed a trilaminar 

arrangement comprising a layer of beta cells sandwiched between two alpha cell layers with 

vessels lining both faces, and this structure folded upon itself to form an islet (3). This model 

suggests the existence of more heterologous intercellular contacts compared with rodent islets. 

 

In common with other microvascular cells, intra-islet endothelial cells express CD31 and von 

Willebrand factor, internalise acetylated LDL, upregulate endothelial markers upon activation 

including E-selectin and L-selectin, contain Weibel-Palade bodies in the cytoplasm and form 

tight junctions (4). In humans, intra-islet endothelial cells are the only microvascular cell type 

found to express high levels of alpha-1 proteinase inhibitor at cell junctions (4), which appears to 

maintain them in a non-proliferative state.  

 

In addition to providing a conduit for blood flow, intra-islet endothelial cells directly enhance 

insulin transcription, secretion and stimulate beta cell proliferation (5). This may be through the 
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secretion of humoral factors, the production of basement membrane components or via cell-

contact dependent mechanisms. 

 

THE BETA CELL/EC AXIS 

Within the pancreatic islet, the intimate association between beta cells and endothelial cells has 

implications for both cell types, and it is more appropriate to consider the components within the 

multicellular islet as a mosaic unit, rather than distinct cellular entities. Multiple mechanisms for 

driving bidirectional communication between beta cells and endothelial cells exist – including 

those mediated by soluble, extracellular matrix and cell-bound molecules (Figure 2). 

 

Soluble factors 

Within the pancreatic islet, soluble factors are an important component of the crosstalk between 

beta cells and endothelial cells. While multiple soluble islet-derived factors have been implicated 

in beta cell survival and insulin secretion, it is only recently that their cellular origin has been 

more accurately investigated.  

 

As the major secreted beta cell product, insulin acts in an autocrine and paracrine manner to 

promote beta cell survival. Additionally, insulin causes the upregulation of eNOS in endothelial 

cells (6) which is likely to promote intra-islet blood flow and enhance its own dissemination. 

Beta cells secrete VEGF-A in large amounts early in development and throughout adult life (7). 

VEGF-A expression is further upregulated in islets by hypoxia and glucose (8), and is important 

for the establishment of native intra-islet vasculature (9), maintenance of beta cell mass (10) and 

the revascularisation of islets following transplantation (11).  In endothelial cells, VEGF-A 
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induces cell migration, proliferation and maintains fenestrations. The potential of VEGF-A to 

enhance the transplantation of pancreatic islets has been thoroughly investigated in animal 

models (12; 13). However, additional VEGF-A is not necessarily beneficial - while VEGF-A 

overexpression may increase the number of intra-islet vascular endothelial cells, the resultant 

vasculature is dysfunctional and islet function is impaired (14). Within islets the abundant 

production of proangiogenic VEGF-A is balanced by angiostatic and antiangiogenic factors, 

including thrombospondin-1 (15). Thus it appears that in the steady state VEGF-A production is 

strictly controlled to maintain the intra-islet vasculature at an appropriate density and with 

functional architecture.  

 

Vascular endothelial cells produce multiple factors that modulate gene expression, proliferation 

and cell survival in beta cells. In islets, thrombospondin-1 is almost exclusively expressed by the 

intra-islet endothelium. Thromobspondin-1 is upregulated in human islets by high glucose (16) 

and while knockout mice have increased beta cell mass and improved revascularisation of 

transplanted islets (17), they are glucose intolerant and display impaired islet function (15). In 

addition to its anti-angiogenic properties, thrombospondin-1 activates latent TGF-β (a potent 

regulator of adult beta cell insulin gene transcription and islet function (18)). Endothelin-1, a 

vasoconstrictive protein, is produced by endothelial cells and may directly stimulate insulin 

secretion in beta cells (19). HGF is a proangiogenic factor expressed by intra-islet endothelial 

cells (20). HGF signals by high affinity binding to its receptor c-Met, which is expressed by beta 

cells. The overexpression of HGF in islets reduces beta cell death in islet transplantation models 

(21), and may be responsible for beta cell proliferation during pregnancy (20). Most recently, 

conditional knockout of HGF signalling in the pancreas increased the susceptibility of mice to 
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streptozotocin-induced hyperglycaemia (22). While these mice had normal glucose homeostasis 

and beta cell mass, they were more vulnerable to beta cell damage mediated via the NF-kB 

pathway.  Thus, HGF/c-Met signalling is likely to be of importance for islet survival, particularly 

during cytokine-mediated damage, as occurs following islet transplantation and during the 

development of diabetes. 

 

Extracellular matrix proteins 

ECM proteins form depots for growth factors to support cellular proliferation and function. The 

majority of ECM proteins exist within basement membranes (underlying vessels and other 

cellular structures) or in the interstitial matrix. Pancreatic islets are encased within a peri-islet 

basement membrane and associated interstitial matrix, containing multiple ECM components 

including laminins, perlecan, collagen type IV and nidogens (23). In addition, intra-islet blood 

vessels have their own basement membrane (5). In the mouse islet, endocrine cells are either 

associated with peri-islet or vascular basement membranes while in human islets intra-islet blood 

vessels contain a double basement membrane (24).  

 

Within pancreatic islets, the ECM plays a multifaceted role and is implicated in islet 

development (25), function (5) and survival (26). The peri-islet membrane is an important 

physical barrier for immune cell infiltration during diabetes development (23; 27). Beta cells do 

not contribute to the islet ECM directly and instead depend on intra-islet endothelial cells to 

synthesise their basement membrane (5). ECM components increase beta cell survival and 

proliferation within pancreatic islets (26), and promote insulin gene expression (5), mainly via 

β1-integrins on the surface of beta cells. This has been demonstrated in experiments where the 
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improved insulin secretion found in beta cells cultured with intra-islet endothelial cell-derived 

factors (28) or attached to ECM (29) is prevented by anti β1-integrin blocking antibodies. 

 

Cell surface proteins  

There are multiple cell surface proteins that are likely to be involved with beta cell/EC crosstalk. 

Cellular contacts within pancreatic islets are crucial for calcium flux and insulin secretion 

following glucose sensing, and glucose-stimulated insulin release is enhanced in whole islets 

compared to isolated beta cells (30). These contacts allow the islet to respond to stimuli as an 

entire unit via coordinated calcium oscillations that amplify insulin secretion, and quickly return 

to the resting state when appropriate. Connexins, ephrins and cadherins are expressed in 

pancreatic islets and have all been implicated in beta cell function. Here we will concentrate on 

the connexin molecules - a family of proteins well known for their gap junction properties that 

may play a newly appreciated role in paracrine signalling (31).  

 

Connexins. Connexins cluster on the cell surface at gap junctions, oligermizing to form hemi-

channels which dock with identical or different hemi-channels on neighbouring cells. The major 

beta cell connexin is Cx36 (this nomenclature indicates a connexin with subunits of 36 kDa), 

which was initially thought to be restricted to neurons. Cx36 junctions allow the passage of ions 

(in particular Ca
2+

 and cAMP (32)) between beta cells during synchronized glucose-induced Ca
2+

 

oscillations (30) and work to dampen Ca
2+

 elevations following membrane depolarizations (33). 

Thus Cx36 within islets allow less excitable beta cells to act as a buffer, suppressing electrical 

activity in their neighbours. Islets deficient in Cx36 have increased basal insulin release with 

diminished glucose-stimulated insulin responses (30) and, in humans, Cx36 is expressed on a 
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genomic region that mediates increased risk of type 2 diabetes (34), further suggesting an 

important role for this molecule in islet function. 

 

Cx43 and Cx45 have also been identified in pancreatic islets, and are specifically expressed on 

intra-islet endothelium rather than on beta cells (35). Interestingly, islet-specific overexpression 

of Cx43 increases islet size and insulin content (36). A new islet-associated connexin, Cx30.2 

has been very recently described, and is expressed at cell-cell contacts in both endothelial and 

beta cells (37). Thus, it is tantalizing to suggest that beta cells and endothelial cells may 

communicate directly via heterotypic connexin junctions, as has been postulated to occur in the 

retina (38) and kidney (39). Alternatively, recent evidence that uncoupled hemi-channels sample 

small molecules (eg. ATP) from the extracellular environment (31) suggests that the role of 

connexins within the islet may not be limited to physical cellular contact as they may also 

participate in paracrine signalling. 

 

IMPLICATIONS OF THE BETA CELL/EC AXIS IN DIABETES 

 

Type 1 diabetes 

Type 1 diabetes is caused by the specific autoimmune destruction of beta cells within pancreatic 

islets. Cells infiltrating pancreatic islets during the early stages of type 1 diabetes include 

macrophages and cytotoxic T cells. The intra-islet vasculature represents a barrier for infiltrating 

autoreactive cells in type 1 diabetes and thus, endothelial cells have been implicated as an 

important target in the diabetogenic process. During islet damage, such as after streptozotocin 

treatment in mice, lymphocytes adhere to the intra-islet endothelium more readily (40). In 
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addition to permitting the entry of infiltrating immune cells, there is evidence that cytokine-

activated intra-islet endothelial cells mediate beta cell apoptosis via the release of nitric oxide, 

which activates apoptotic caspase and DNA damage pathways (41; 42). Human intra-islet 

endothelial cells become activated and upregulate their expression of adhesion molecules and 

proinflammatory cytokines following infection with coxsackie B virus (43) – a postulated 

initiator of type 1 diabetes.  

 

Type 2 diabetes 

The pathogenesis of type 2 diabetes includes genetic and environmental factors that result in 

elevated circulatory free fatty acid levels and insulin resistance, followed by beta cell 

dysfunction. Mechanistically, glucotoxicity, lipotoxicity, pro-insulin biosynthesis and advanced 

glycation end products act in concert to inhibit beta cell function and increase apoptosis (44). In 

the hyperglycaemic, hyperlipidemic type 2 diabetes patient, vascular endothelial cells are in 

constant contact with these potentially cytotoxic substances. While hyperglycaemia may directly 

induce apoptosis in intra-islet endothelial cells by upregulating the expression of reactive nitric 

oxygen species via a JNK-mediated pathway (45), an earlier vascular-associated pathogenic 

mechanism has been postulated to exist. In models of type 2 diabetes, early microvasculature 

changes are detectable within islets and precede the onset of hyperglycaemia, overt endothelial 

cell destruction and beta cell degeneration. In the Zucker fatty rat, endothelial thickening and 

loss of fenestrations were accompanied by increases in VEGF-A mRNA and protein levels (46) 

– contrary to what might be predicted by VEGF-A knockouts that have a similar islet vascular 

phenotype (47). However, VEGF-A causes the overproduction of ECM proteins and in this way 

may contribute to inflammation and fibrosis in islets via the recruitment of macrophages and 
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other leukocytes (48; 49). Thus, onset of type 2 diabetes may be preceded by VEGF-A-driven 

endothelial dysfunction, overproduction of ECM and inflammation, which combine to bring 

about the ultimate destruction of the beta cell.  

 

IMPLICATIONS OF THE BETA CELL/EC AXIS IN PANCREATIC ISLET 

TRANSPLANTATION 

 

Islet transplantation 

Despite improved insulin delivery techniques and drug design, around 90% of diabetic patients 

develop severe cardiovascular complications over time. Pancreatic islet transplantation 

represents a promising therapy for type 1 diabetes that is effective in reducing HbA1c and 

hypoglycaemia (50; 51) and is beginning to yield improved protection from diabetes-associated 

complications (52). Upon organ procurement, islets are separated from their dense capillary 

network and rich blood supply and are dependent upon the diffusion of oxygen and nutrients 

from the islet periphery until revasularisation can occur. During enzymatic isolation from the 

donor pancreas, islets come under a myriad of cellular assaults including ischemia, physical 

stress, and loss of contact with key basement membrane proteins and signalling molecules (53), 

resulting in a substantial loss of viability before transplantation. Clinically, islets are cultured 

prior to transplantation, and intra-islet endothelial cells reduce rapidly in this period (54 and CFJ 

unpublished). Therefore, not only do islet transplants face multiple cytotoxic challenges, but they 

are depleted of the building blocks required for rapid revascularisation. In the first few days post-

transplantation islets undergo a dramatic remodeling process accompanied by changes in insulin 

content and hypoxic and inflammatory insults have a detrimental effect on islet survival and 
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function. A major limitation for islet transplantation is the substantial amount of cell death seen 

in this early post-transplant period which accounts for the loss of up to 60-80% of transplanted 

islet mass (55). This necessitates the use of multiple donors for each recipient – a major 

limitation for the roll out of this therapeutic option into the wider type 1 diabetes community. 

 

Revascularisation of transplanted islets 

Many groups have examined revascularisation events following islet transplantation. One 

difficulty has been correlating results from the renal subcapsular mouse model in which an 

aggregate of pristine rodent islets are transplanted into a syngeneic avascular site, to the human 

situation, where islets of variable purity and quality are dispersed throughout the portal 

circulation of an often hyperglycaemic, immunosuppressed patient. Nevertheless, the field has 

gained important insight into the mechanisms underlying islet revascularisation. This has been 

further enabled by powerful models such as the transplantation of islets into the rodent anterior 

chamber of the eye, to allow real-time microscopic analysis of cellular events (56).  

 

Unlike solid organs, transplanted islets are not directly reconnected to the blood supply. 

Following intraportal transfusion, around half of surviving transplanted islets remain within the 

portal vein tributaries, while the remainder migrate further into the vessel wall (57). Vascular 

sprouting, angiogenesis and revascularisation occur within the first few days post-

transplantation. These processes involve recruited bone marrow-derived cells, recipient local 

vascular cells and donor ‘passenger’ endothelial cells derived from the islet transplant itself (54; 

58; 59). The contribution from donor cells may explain the superior function of freshly isolated 

islets (60), which are endowed with additional donor intra-islet endothelial cells, and small islets 

Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ 



14 
 

(61), which are less dependent on revascularisation. Multiple bone marrow lineages, including 

hematopoietic, mesenchymal and endothelial, all participate in the early stages of islet 

engraftment, via the production of soluble factors, recruitment of accessory cells and/or 

incorporation into newly formed vasculature. Ultimately, the functional intra-islet vasculature in 

a transplanted islet is a mosaic of donor and recipient-derived cells, the majority of these being 

generated from existing local vessels, with bone marrow-derived cells comprising less than 10% 

of long term intra-islet vasculature (57). Islet engraftment is a slow process, and while islet blood 

flow is reestablished in 7-14 days (62), the maturation of these vessels is likely to take several 

months. In addition, immunosuppressive drugs, including mTOR inhibitors (eg. rapamycin), 

potentially compound the problem as they have been found to inhibit angiogenesis in human 

intra-islet endothelial cells (63). Although some studies, including post-mortem analysis of an 

islet transplant recipient (64), show little difference in the ultimate vascular density of 

transplanted islets, most studies suggest that revascularised islets display a decreased vascular 

density and lower oxygen tension compared to native islets, regardless of the transplantation site 

(65). Recent work using an accurate microsphere technique showed that the perfusion of 

intraportally transplanted islets was 5% that of native islets at 1 month post-transplantation, with 

24% the vascular density (57).  

 

FUTURE DIRECTIONS TO IMPROVE ISLET TRANSPLANTATION 

 

Considering the importance of the vasculature for islet function, it is of little surprise that 

research has been directed at enhancing the revascularisation response post-transplantation. 

While a number of molecules and pathways have been targeted, the approach showing most 
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potential to date is the overexpression of VEGF-A by transplanted islets. However, as discussed 

above, the question of optimal VEGF-A dose for islet vasculature is not a simple one. While 

VEGF-A is crucial for the vascularization of islets during development and following 

transplantation (7; 47), continued beta cell overexpression of VEGF-A can impair islet 

morphology and result in poorly functioning islets with an inflammatory phenotype (14; 49).  

 

Another approach to improve outcomes for islet transplantation aims to promote beta cell 

survival (66; 67). While multiple studies have shown potential for maintaining viable beta cells 

in the early post-transplant period, it is known that even long term-surviving islets have impaired 

function and this may be due to the paucity of functional intra-islet vasculature. Human 

embryonic stem cells may now be differentiated into insulin-producing glucose responsive cells 

that express markers of islet cell development such as Pdx-1 (68) and cure diabetes in rodent 

models (69). While stem cell-derived beta cells hold enormous promise for alleviating the 

problem of islet donor shortage, it is likely that these cells will need to be co-transplanted with 

cells or factors capable of directing their appropriate differentiation and supporting beta cell 

survival. Thus, assuming we are able to overcome the acute phase of immunological and 

cytotoxic attack of the islet mass, a parallel challenge is to establish appropriate vasculature, 

sufficient to support an optimally functioning pancreatic islet in the longer term.  

 

Restoration of the beta cell/EC axis with endothelial progenitor cell therapy 

A cellular co-therapy at the time of transplantation is one strategy to improve islet 

revascularisation and/or enhance beta cell function. The ideal candidate should be able to migrate 

to the required site, deliver supportive factors, and persist for the appropriate time. Mesenchymal 
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stem cells stimulate vessel ingrowth into islets in vitro (70) and their co-transplantation improves 

islet transplant outcomes in rats (71). While somewhat efficacious, concerns linger regarding the 

potential invasiveness and pluripotency of mesenchymal stem cells especially in the immune-

compromised transplant population.  

 

Endothelial progenitor cells (EPCs) are a circulating bone-marrow derived cell population first 

described by Asahara and colleagues (72). EPCs are able to home to sites of tissue damage or 

ischemia and can participate in wound healing, post-natal vasculogenesis and re-

endothelialisation of blood vessels (73).  Over 200 clinical trials involving EPCs are currently 

underway and significant progress has been made in the utilisation of these cells as a therapeutic 

tool. Given their complex interactions with multiple cell types, augmentation of EPC function is 

as important as increasing gross peripheral numbers. Human autologous cell therapies using 

EPC-containing products (such as bone marrow or mobilized peripheral blood) are feasible and 

effective in the treatment of coronary and peripheral ischemic syndromes (74). Most recently, 

human clinical cell therapy trials have applied bone marrow derived mononuclear cells, CD34+ 

or CD133+ isolated hematopoietic progenitor cells because of their easy accessibility and safety 

(reviewed in(75)). 

 

EPCs represent an ideal candidate to provide an engraftment niche for transplanted islets. EPCs 

may enhance islet engraftment in multiple ways - by providing not only the building blocks for 

revascularisation, but also angiogenic and cell survival factors to augment the process. EPCs 

secrete multiple factors including HGF, which enhances the survival of transplanted islets and 

stimulates beta cell proliferation. While mature endothelial cells lack the survival characteristics 
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and plasticity to re-establish intra-islet vasculature, EPCs possess these properties. In addition, 

EPCs isolated from peripheral blood or bone marrow permit the use of autologous EPCs, 

lessening the risk of sensitisation to multiple alloantigens in the transplant setting. Considering 

the ability of EPCs to migrate to distant sites, alternate forms of delivery including intravenous 

infusion of exogenous EPCs or upregulation of endogenous EPCs from the bone marrow, may be 

considered as an adjunct to pancreatic islet transplantation in the future. Another alternate mode 

of delivery is the construction of mosaic structures in vitro (76), which may comprise 

combinations of islet cells, beta cell progenitors, EPCs, mature endothelial cells and/or 

mesenchymal stem cells, prior to transplantation. This approach has the advantage of delivering 

a minimal number of adjunct cells placed in the optimal anatomical location to exert their 

supportive roles. Consideration should also be given to additional pro-angiogenic supportive 

cells such as microvascular pericytes, which encircle capillaries and microvessels and regulate 

microvascular physiology (77), and pro-angiogenic myeloid cells such as Gr1+CD11b+ cells, 

which are also mobilised from the bone marrow in response to G-CSF, migrate to sites of 

neovascularisation and promote angiogenesis (78). 

 

 In 2012, Kang and colleagues (79) demonstrated the potential of human EPCs for enhancing the 

engraftment of transplanted porcine islets in an immunodeficient mouse xenograft model. After 

co-transplanting EPCs with islets under the kidney capsule they saw an increase in vascular cell 

density within the first two weeks of transplantation. Despite showing no difference in vessel 

density at 1 month, there was improved glycaemic control in co-transplanted animals due to an 

increase in engrafted beta cell mass, highlighting the impact of hastening early revascularisation 

events. More recently, researchers have used syngeneic models to show that co-transplanted 
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murine EPCs improve the cure rate, function and vascularization of a marginal transplanted islet 

mass (80 and CFJ unpublished). Observations that the EPCs localized within and around the islet 

mass and that VEGF was produced by these cells, suggest that EPCs may act in a paracrine and 

autocrine manner to improve islet engraftment. Taken together, these studies support the notion 

that EPCs, or the factors they produce, may be of benefit in enhancing the survival and 

engraftment of transplanted pancreatic islets.  

 

 

THE INTRA-ISLET ENDOTHELIAL CELL – A KEY PLAYER IN DIABETES AND 

ISLET TRANSPLANTATION? 

 

While the destruction of otherwise healthy beta cells is a hallmark of type 1 diabetes, type 2 

diabetes is characterized early by beta cell dysfunction. Regardless of these differences, it is clear 

that the vasculature, in particular within the pancreatic islet, is likely to play an important role in 

both diseases. Likewise, the successful reestablishment of intra-islet vasculature following 

pancreatic islet transplantation will be important both for beta cell survival in the early post-

transplant period and optimal islet function in the longer term. 

 

As such the intra-islet endothelial cell may represent an important common breaking point – 

whereby failure of this multifunctional cell type could result in multiple downstream events with 

detrimental effects on glycaemic control. Dysfunctional intra-islet endothelium is likely to 

enhance the recruitment and infiltration of autoreactive cells, and ultimately further stimulate the 

autoimmune process. Disruption of vascular tone and suboptimal intra-islet blood flow will 
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result in altered dissemination of insulin, interrupted clearance of toxic metabolites and reduced 

provision of blood-borne oxygen and nutrients. Considering the vascular endothelial cells 

themselves, alteration in phenotype during islet isolation, culture and transplantation would 

perturb the production of ECM proteins, secreted beta cell-supportive factors and direct cellular 

signals that are so crucial for the proper operation of the pancreatic islet unit.  

 

In short, a dysfunctional intra-islet vascular endothelium may contribute to the progression of 

type 1 diabetes, worsening of type 2 diabetes, and the failure of transplanted pancreatic islets. 

Therapies that prevent breakdown of the intricate beta/endothelial cell axis within the pancreatic 

islet, or restore this crosstalk once it has been interrupted, have the potential to improve 

outcomes for diabetic patients in the future. 
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Figure legends. 

Figure 1. Ultrastructure of pancreatic islets. TEM image of a native islet in the mouse 

pancreas. Thin endothelial cells of intra-islet capillaries are only separated by a basement 

membrane (arrows) from the islet cells. The characteristic abundant diaphragm-covered 

fenestrations are observable (arrowheads). Reprinted with permission from Nyqvist et al. (81). 

 

Figure 2. Proposed mechanisms of intercellular communication within the pancreatic islet. 

Soluble factors: Beta cells secrete large amounts of vascular endothelial growth factor-A 

(VEGF-A) which is mitogenic for endothelial cells and crucial for maintaining the density and 

specialty phenotype of fenestrated intra-islet endothelial cells. Insulin induces changes in 

endothelial cells, including the upregulation of eNOS. Endothelium-derived factors, including 

hepatocyte growth factor (HGF), improve beta cell survival and promote insulin 

transcription/secretion. Other endothelial cell-derived factors include thrombospondin (TSP-1), 

fibroblast growth factor (FGF) and vasoconstrictive endothelin-1. Extracellular matrix proteins: 

collagens, laminins and preoteoglycans interact with β1-integrins on beta cells to enhance islet 

cell survival and function. In the islet the majority of these components are synthesized by the 

intra-islet endothelial cells. Cell surface molecules: Connexin 36 is the major islet connexin and 

is involved in coordinated pulsatile insulin release. Connexins are capable of forming homo- or 

hetero-junctions to directly pass molecules between cytoplasms, while uncoupled connexin 

hemi-channels may sample ATP from the extracellular environment. Other cell surface 

molecules implicated in intercellular signalling in the islet include ephrin A and E-cadherin. 
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