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Human Immunology, Centre for Cancer Biology, SA Pathology, 

Co-operative Research Centre for Biomarker Translation, LaTrobe University, 
Australia 

1. Introduction 

The formation of blood vessels is essential for preparing a closed circulatory system in the 

body, and for supply of oxygen and nutrients to all tissues and organs. One of the key 

mechanisms behind many autoimmune diseases is abnormal blood vessel structure and 

function. This dysfunction is reflected in some of the serious manifestations of rheumatoid 

arthritis (RA), type 1 diabetes mellitus (T1DM) and systemic sclerosis (SSc) that are currently 

difficult to treat, such as loss of fingers due to reduced blood flow, kidney failure due to 

renal hypertensive crisis and heart failure due to pulmonary arterial hypertension. The cells 

that line blood vessels (endothelial cells) not only confine blood to the vessels but actively 

participate in the recruitment of circulating cell subsets to sites of inflammation and vascular 

permeability for the exchange of solutes and gases. Collectively, endothelial cells play many 

roles in the development and maintenance of blood vessels. Blood vessel development 

occurs primarily via one of two mechanisms, angiogenesis (the generation of blood vessels 

from pre-existing vasculature) and vasculogenesis (the recruitment of endothelial progenitor 

cells from the bone marrow to sites of vascularisation). In recent decades, extensive studies 

have revealed that a variety of factors and their receptors regulate angiogenesis in 

vertebrates, including vascular endothelial growth factor (VEGF)-VEGFRs, angiopoietin-Tie, 

Ephrins-EphRs and Delta-Notch (reviewed by  Karamysheva (Karamysheva, 2008)). Indeed, 

targeting these molecules has resulted in significant advances in the treatment of cancer and 

cardiovascular disease. However, the burden of diseases that involve vascular dysfunction 

is immense and continues to rise with drug resistance, intolerance and ineffectiveness being 

significant contributors. Less is known about the mechanisms underpinning vasculogenesis 

and despite an explosion of research in this area over the past decade we are yet to fully 

exploit these cells for therapeutic benefit (Sen et al., 2011, Sieveking and Ng, 2009). This 

chapter discusses whether the endothelial progenitor cells (EPCs) from patients with 

autoimmune diseases, such as RA, T1DM and SSc, behave differently from normal EPCs 

and whether there are factors in the serum of these patients that may be responsible for this 

abnormal behaviour. The altered behaviour of EPCs in patients with autoimmune disease is 

poorly understood, based on limited studies to date. This chapter addresses whether EPCs 

would be a prime target for therapeutic intervention in the serious complications of 

autoimmune disease. 
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2. Vascular dysfunction in autoimmune disease 

2.1 Rheumatoid arthritis 

RA is a chronic and debilitating autoimmune disease that affects the joints. The disease is 

characterised by inflammation of the synovial tissue, which lines the joints and tendons. In 

healthy tissue, the synovium is made up of synovial cells, a network of capillaries and 

lymphatic vessels, and a well-organized matrix containing proteoglycan aggregates. 

Between the cartilage and synovium is the synovial fluid, which nourishes and lubricates 

the joint. In RA, cells of lympho-haematopoietic origin, e.g. T-helper cells, B cells and 

macrophages, infiltrate the synovium. The synovium also becomes thickened, from a layer 

of 1–2 cells to approximately 6–8 cells, and becomes locally invasive at the interface with the 

cartilage and the bone or tendon. The volume of the synovial fluid eventually increases in 

volume as a result of oedema, which causes swelling of the joints and pain. 

Several lines of evidence indicate that RA is associated with aberrant and severe 

vasculogenesis (i.e. the de novo formation of blood vessels) within the inflamed joints 

(Paleolog, 2009, Grisar et al., 2007, Grisar et al., 2005, Herbrig et al., 2006, Hirohata et al., 

2004, Jodon de Villeroche et al., 2010, Ruger et al., 2004, Silverman et al., 2007). One of the 

first observations of vasculogenesis in RA was the discovery that the synovial fluids from 

patients with RA contained a low molecular weight vasculogenesis factor apparently 

identical to that derived from tumours (Brown et al., 1980). Subsequent studies revealed that 

synovial fluid from patients with RA stimulated proliferation of human endothelial cells 

(Kumar et al., 1985) and the formation of tubular networks (Semble et al., 1985). A study of 

synovial tissue histology from patients with RA revealed that there is a significant 

correlation between the number of synovial blood vessels and vessel proliferation, 

mononuclear cell infiltration, fibrosis and clinical measurements of joint tenderness (Rooney 

et al., 1988). Capillaries are distributed more deeply in the synovium from patients with RA 

(Stevens et al., 1991). The different stages of rheumatoid arthritis are shown in Figure 1 

(upper panel). Although perivascular mononuclear cell infiltration and increased thickness 

of the synovial lining layer are observed in tissue from both inflamed and non-inflamed 

joints of RA patients, vascular proliferation is seen only in tissues from inflamed joints 

(FitzGerald et al., 1991). In addition, endothelial cells lining blood vessels within RA 

synovium have been shown to express cell cycle-associated antigens such as proliferating 

cell nuclear antigen and Ki67, and integrin alpha 5 beta 3, which is associated with 

vascular proliferation (Ceponis et al., 1998). Hypoxia, which can activate vasculogenesis 

factors and cause further invasion of the synovium, is another common event that occurs 

within the synovial joints in RA (FitzGerald et al., 1991, Muz et al., 2009). Taken together, 

these studies indicate that vascular dysfunction in synovial tissue is a likely therapeutic 

target in RA.  

2.2 Type 1 diabetes mellitus 

T1DM is a life-long autoimmune disease characterised by hyperglycaemia. Hyperglycaemia 

in T1DM occurs when the number of insulin-producing ß-cells in the pancreatic Islets of 

Langerhans drops below the number required to control glycaemia. Hyperglycaemia leads 

to macrovascular complications, such as coronary artery disease, peripheral arterial disease, 

and stroke, and microvascular complications, such as diabetic nephropathy, neuropathy, 

and retinopathy. Onset is early in life and patients exhibit increased risks of renal failure, 
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blindness, amputation, stroke and heart attack (Shapiro et al., 2006). Best available practice 

with insulin therapy is not a cure as it does not protect the remaining islets from 

inflammatory attack or the patient from long-term complications.  

Insulin-producing ß-cells, which comprise 60-80% of islet mass, are crucial for the 

maintenance of normal blood sugar. Pancreatic islets are highly metabolically active and 

densely vascularised with specialized endothelium – they receive 10% of pancreatic blood 

flow despite comprising only 1% of tissue mass. Pancreatic islets come under a myriad of 

cellular assaults during isolation including ischemia, enzymatic damage and physical stress. 

Dysfunction of the endothelium plays a critical role in the development of vascular 

complications in T1DM (Stehouwer et al., 1997, Flyvbjerg, 2000). Clinical trials have shown 

that hyperglycaemia leads to changes in the proliferation of endothelial cells, barrier 

function and the adhesion of other circulating cells to endothelial cells (Schalkwijk and 

Stehouwer, 2005). This vascular dysfunction may be mediated by several distinct 

mechanisms and different stages of diabetic retinopathy are shown in Figure 1 (middle 

panel). Hyperglycaemia results in an increase in intracellular glucose, which leads to an 

increase in the conversion of glucose to sorbitol via the polyol pathway. This increase in 

sorbitol can cause osmotic stress, tissue hypoxia and oxidative stress (Williamson et al., 

1993, Schalkwijk and Stehouwer, 2005). Hyperglycaemia also results in activation of protein 

kinase C, which can cause dysregulation of vascular permeability and blood flow, basement 

membrane thickening and impaired fibrinolysis (Williamson et al., 1993, Chen et al., 2000). 

In addition, hyperglycaemia causes increased glucosamine-6-phosphate and consequently 

increased transcription of cytokines such as transforming growth factor beta, which can 

regulate the proliferation and apoptosis of endothelial cells (Nerlich et al., 1998, Ziyadeh, 

2004). Greater insight into the mechanisms underlying endothelial dysfunction may lead to 

important treatment strategies which can reduce the morbidity and mortality rate caused by 

endothelial dysfunction in patients with T1DM.  

2.3 Systemic sclerosis 

SSc is a heterogeneous disease in which vascular dysfunction, extensive fibrosis and 

autoimmunity are the hallmark characteristics. The aetiology of SSc is unknown as there are 

many unresolved questions as to both cause and initiating factors (Geyer and Muller-

Ladner, 2011). Multiple genetic and environmental factors, combined with other specific 

factors (e.g. alterations to the immune system, vasculature and extracellular matrix) are the 

most likely causes of this insidious disorder. The pathophysiology of SSc is diverse and 

includes abnormal immunologic processes such as cytokine and chemokine dysregulation, 

abnormal T cell signalling, B cell dysfunction, endothelial injury, aberrant wound healing 

due to dysregulation of matrix homeostasis, abnormalities in the fibrinolytic system, 

polymorphisms in critical molecules of the immune system and matrix homeostasis, and 

microchimerism due to foetal/maternal placental exchange of HLA compatible cells 

(Gabrielli et al., 2009).  

Vascular dysfunction is an early event in SSc (Kahaleh, 2008) and the different stages of SSc 

are shown in Figure 1 (lower panel). The preferred site of early lesions in SSc is the 

perivascular space. Progressive wall thickening and perivascular infiltrates are features of 

the vascular lesions in this compartment, indicating the involvement of vascular smooth-

muscle cells and pericytes. Endothelial cells are the only type of mesodermal cell that  
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Rheumatoid arthritis 

 

Diabetic retinopathy 

 

Systemic sclerosis 

 

In rheumatoid arthritis (upper panel), circulating endothelial progenitor cells (EPCs) and vasculogenesis 
are causally linked to the influx of pro-inflammatory leukocytes and increased capillary beds contribute to 
thickening of the synovial lining and joint pain. In diabetic patients with proliferative retinopathy (middle 
panel), infiltrating EPCs contribute to the dense vascularisation in the eye and reduced vascular stability 
associated with blindness. Vascular injury is one of the early events in the pathogenesis of systemic 
sclerosis (lower panel) and is characterized by endothelial-cell damage and apoptosis, the proliferation of 
fibroblasts, production of collagen and infiltration of circulating leukocytes. Despite the increased number 
of circulating EPCs in these patients, the endothelial layer of the vasculature remains denuded and is 
ultimately obliterated. 

Fig. 1. Vascular dysfunction in autoimmune disease. 
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undergo apoptosis in early SSc, whereas vascular smooth-muscle cells and pericytes 

proliferate vigorously. This vascular damage, which eventually occurs in almost all organs 

(Harrison et al., 1993), presents as large gaps between endothelial cells, loss of integrity of 

the endothelial lining, and the formation of vacuoles in the endothelial cell cytoplasm. In 

addition, several basal lamina-like layers build up, mononuclear immune cells infiltrate the 

vessel walls, obliterative microvascular lesions occur, and the capillaries rarefy (Prescott et 

al., 1992, Fleming et al., 2008). In the later stages of SSc, relatively few small blood vessels 

remain. Serum levels of VEGF are high in SSc despite the progressive loss of blood vessels 

(Distler et al., 2004, Davies et al., 2006), possibly as a result of an adaptive response to 

hypoxia (Fleming et al., 2008, Kuwana et al., 2004, Cipriani et al., 2007). The molecular 

mechanisms underlying this defect in vasculogenesis are unknown and both vasculogenic 

(Davies et al., 2006, Distler et al., 2004) and anti-vasculogenic (Fleming et al., 2008, Hebbar et 

al., 2000, Scheja et al., 2000) factors have been detected in early SSc. Inflammatory cytokines, 

such as tumour necrosis factor (TNF), can stimulate or inhibit angiogenesis depending on 

the duration of the stimulus (Sainson et al., 2008). Collectively, these data indicate that 

vascular dysfunction is a common event in SSc and an important therapeutic target.  

3. Endothelial progenitor cells 

EPCs were first discovered in peripheral blood by Asahara and colleagues in 1997 (Asahara 
et al., 1997). This discovery revealed that vasculogenesis occurs after post-natal 
development. Vascular insult or disease causes the upregulation of cytokines such as VEGF, 
stromal cell-derived factor-1 (SDF-1) matrix metalloproteinase 9 (MMP9), hypoxia inducible 
factor 1α (HIF-1α) and erythropoietin (EPO) at the site of injury and this stimulates the 
release of EPCs from the stem cell niche in the bone marrow into the circulation (Aicher et 
al., 2005). EPCs then follow the cytokine gradient to the site of vascular trauma where 
they contribute to vasculogenesis either by (1) paracrine assistance (via production of 
VEGF and endothelial nitric oxide synthase (eNOS)) (2) integration or (3) new vessel 
formation (Figure 2). 
There are currently two distinct ways in which EPCs are identified, i.e. (1) they are directly 

identified in the peripheral blood by the surface antigen expression of any combination of 

CD133, CD34 and VEGR2 or (2) they are isolated from either peripheral blood (Asahara et 

al., 1997), umbilical cord blood (Asahara et al., 1997, Shi et al., 1998) or bone marrow (Shi et 

al., 1998) and cultured ex vivo. The complication associated with using the cell surface 

markers CD133, CD34 and VEGFR2 to identify EPCs is that these markers are not 

exclusively expressed on EPCs and can be found on many other cell types including the 

closely related haematopoietic progenitors and mature endothelial cells as well as 

fibroblasts, epithelial cells and cancer stem cells (Hirschi et al., 2008, Kumar and Caplice, 

2010). Further evidence of a need to standardise the isolation technique, culture conditions 

and phenotyping strategy is exemplified by Case et al., who suggest that it is not possible to 

culture EPCs from a CD133+ CD34+ VEGFR2+-sorted population (Case et al., 2007).  

Currently, the term ‘EPC’ is used to describe two populations of cells cultured in vitro, both 

of which show vascular potential, but differ in both phenotype and function. The first EPC 

population to be characterised in vitro were the early-outgrowth EPCs, or colony forming 

unit-endothelial cells (CFU-ECs). Early-outgrowth EPCs form colonies after 3-5 days in 

culture on fibronectin-coated wells, consist of multiple thin, flat cells emanating from a 
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Recruitment of endothelial cells from pre-existing vessel walls or circulating endothelial progenitor cells 
(EPCs) play a critical role in blood vessel development and repair during disease states. Mobilised 
bone-marrow derived EPCs with high proliferative capacity may have the potential to home to a site for 

vascularisation and act in a paracrine or autocrine way to promote vessel wall development. 
Abbreviations: SDF-1, stromal derived factor -1; MMP9, matrix metalloproteinase 9; VEGF, vascular 
endothelial growth factor; HIF-1α, hypoxia inducible factor 1α; EPO, erythropoietin; eNOS, endothelial 
nitric oxide. 

Fig. 2. Model of postnatal angiogenesis and vasculogenesis.  

central cluster of round cells and express CD133, VEGFR2 and CD34 (Hur et al., 2004). 

Early-outgrowth EPCs secrete pro-angiogenic factors (Hur et al., 2004, Rehman et al., 2003, 

Yoon et al., 2005), but are not able to form tubes when seeded alone in Matrigel (Rehman et 

al., 2003, Timmermans et al., 2007, Yoder et al., 2007, Yoon et al., 2005). When transplanted 

into mice, they are able to increase capillary density in a model of limb ischemia (Hur et al., 

2004, Yoon et al., 2005), suggesting that they contribute to tube formation through paracrine 

mechanisms. Early-outgrowth EPCs express the pan-leukocyte marker CD45 and the 

myeloid marker CD14 and have been shown to be of monocyte origin (Medina et al., 2010) 

and are thus not considered true endothelial cell progeny. 

The second EPC population to be characterised are the late-outgrowth EPCs, which as also 

referred to as outgrowth endothelial cells (OECs) and endothelial colony forming cells 

(ECFCs). Late-outgrowth EPCs can be isolated from bone marrow, cord blood and 

peripheral blood and form colonies with distinct cobblestone morphology, similar to that of 

endothelial cells within 2-4 weeks when cultured on either collagen or gelatin (Lin et al., 

2000, Shi et al., 1998). Late-outgrowth EPCs have 10 times the proliferative capacity of 

mature ECs, they express mature endothelial cell markers including von Willebrand factor 

(vWF), CD31 and VEGFR2, but not the progenitor marker CD133 and they are able to form 

tubes in Matrigel (Bompais et al., 2004, Ingram et al., 2004, Lin et al., 2000, Rehman et al., 

2003, Timmermans et al., 2007, Yoder et al., 2007, Yoon et al., 2005). Late-outgrowth EPCs 
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have been shown to increase neovascularisation in a mouse limb ischemic model (Hur et al., 

2004, Yoon et al., 2005) and are haemangioblastic in origin (Medina et al., 2010) and are thus 

considered to be true endothelial cell progeny. 

Whilst the monocytic early-outgrowth EPCs and the haemangioblastic late-outgrowth EPCs 

are distinct EPC populations, the combined therapeutic potential of these two EPC 

populations is greater than either of the EPC populations when delivered individually in a 

mouse model of limb ischemia (Yoon et al., 2005), suggesting that these EPC populations 

may function synergistically during vasculogenesis.  

4. Endothelial progenitor cells in autoimmune disease 

4.1 Endothelial progenitor cells in rheumatoid arthritis 

The association between EPC numbers and RA has brought about conflicting results (Table 1). 

Some studies have reported a lower circulating EPC number in RA patients compared with 

controls (Grisar et al., 2005, Herbrig et al., 2006), whilst others report higher numbers (Jodon de 

Villeroche et al., 2010) and a few report no differences (Egan et al., 2008, Kuwana et al., 2004). 

A schematic of a potential role for EPCs in RA is depicted in Figure 1 (upper panel). 

In the studies that reported lower circulating EPC numbers in patients with active RA 

compared to healthy controls (Grisar et al., 2005, Herbrig et al., 2006), the circulating EPCs 

were identified through the expression of CD133, CD34 and VEGFR2 and the formation of 

early-outgrowth EPC colonies. It is highly likely that these studies were not specifically 

identifying a pure EPC population, but rather a mixed population consisting of both early-

outgrowth EPCs, late-outgrowth EPCs and haematopoietic progenitors, as the biomarkers 

used to identify EPCs are not specific for any one cell type. 
In contrast, Jodan de Villeroche et al used a method to exclusively identify haemangioblastic 
late-outgrowth EPCs distinct from monocytic early-outgrowth EPCs (Jodon de Villeroche et 
al., 2010). Jodan de Villeroche et al exclusively monitored the number of late-outgrowth 
EPCs by detecting Lin-/7-aminoactinomycin (7-AAD)-/CD34+/CD133+/VEGFR2+ cells 
from CD14 depleted peripheral blood. This detection panel eliminated apoptotic cells (using 
7-AAD) and early-outgrowth EPCs (through CD14 depletion). Using these methods this 
study revealed that RA patients with active RA had significantly higher levels of circulating 
late-outgrowth EPCs compared with controls. To complement these findings, this study also 
investigated the formation of late-outgrowth EPC colonies and found that RA patients had a 
higher number of late-outgrowth colonies compared to controls. This study was the first to 
implement a method that made a distinction between the two EPC populations.  

4.2 Endothelial progenitor cells in type 1 diabetes mellitus 

A decrease in EPC number and function has been associated with T1DM and has been 

reported by several groups (Table 2). However before comparisons can be made between 

studies, it is important to consider the methods used to quantify EPC numbers in these 

studies. Circulating EPC numbers were quantified either by surface antigen expression on 

peripheral blood mononuclear cells (PBMNCs) (Brunner et al., 2009, Sibal et al., 2009), 

through the culture of early-outgrowth EPC colonies (Asnaghi et al., 2006) or through the 

uptake of acetylated LDL and binding of UEA-l to cultured PBMNCs (Loomans et al., 2004). 

To the best of our knowledge, there are currently no reports on the correlation between 

T1DM and the growth of late-outgrowth EPCs.  
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Reference Method of EPC identification Comments 

Grisar et al., 
2005 

Expression of CD133/CD34/VEGFR2 
from PBMNC using flow cytometry. 

EPCs were lower in active RA 
patients compared to healthy 
controls when assessing surface 
antigen expression. 

  
In vitro culture of PBMNCs and 
detection of early-outgrowth EPCs 
colonies. 

Reduced number of early-
outgrowth EPC colonies in 
active RA patients compared to 
healthy controls. 

Grisar et al., 
2007 

Expression of CD133/CD34/VEGFR2 
from PBMNC using flow cytometry. 

TNF may be partly responsible 
for the reduction of circulating 
EPCs seen in RA patients.  

      

Egan et al., 
2008 

Expression of 
CD133/CD117/CD34/CD31 from 
PBMNCs using flow cytometry. 

No difference in the number of 
EPCs in RA patients and healthy 
controls when assessing surface 
antigen expression. 

  
In vitro culture of PBMNCs and 
detection of early-outgrowth EPCs 
colonies. 

Reduced number of early-
outgrowth EPCs in active RA 
patients compared to healthy 
controls. 

    
Early-outgrowth EPC colony 
numbers were associated with 
cardiovascular risk. 

Jodon de 
Villeroche et 
al., 2010 

Surface antigen profile Lin-/7AAD-
/CD34+/CD133+/VEGFR2+ from CD14-
depleted PBMNCs using flow cytometry.

RA patients had higher numbers 
of circulating EPCs than healthy 
controls. 

  
In vitro culture PBMNCs and detection 
of late-outgrowth colonies. 

Circulating EPCs correlated 
with disease activity. 

Herbrig et al., 
2006 

In vitro culture of PMNCs and 
assessment of Ac-LDL uptake, UEA-1 
lectin binding and the surface antigen 
profile VE-
cadherin+/CD31+/VEGFR2+/CD146-. 

EPCs from RA patients showed 
reduced migratory activity in 
response to VEGF. 

Abbreviations: RA, rheumatoid arthritis; PBMNCs, peripheral blood mononuclear cells; EPCs, 
endothelial progenitor cells; Ac-LDL, acetylated-low density lipoprotein; UEA-1 lectin, Ulex Europaeus 
Lectin; TNF, tumour necrosis factor; VEGF, vascular endothelial growth factor. 

Table 1. Studies that have reported aberrant EPC numbers in patients with RA. 

EPC dysfunction has been seen in patients with T1DM, as shown by Loomans et al. when 

conditioned media from EPCs isolated from T1DM patients impaired in vitro tube 

formation of HUVEC (Loomans et al., 2004). An inverse relationship between the number of 
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EPCs and HbA1C in patients has also been identified (Loomans et al., 2004). Moreover, there 

appears to be an association between the progression of diabetic retinopathy and the level of 

circulating EPCs. In patients with T1DM and proliferative retinopathy a marked increase in 

circulating EPCs has been reported (Asnaghi et al., 2006, Brunner et al., 2009). Conversely, 

circulating EPC numbers have been identified as being lower in patients with T1DM and 

non-proliferative retinopathy (Brunner et al., 2009). These studies highlight how atypical 

EPC numbers and function are associated with T1DM pathology and a schematic of a 

potential role for EPCs in diabetic retinopathy is depicted in Figure 1 (middle panel). 

 

Reference Method of EPC identification Comments 

Loomans et al., 
2004 

In vitro culture of PMNCs and 
assessment of Ac-LDL uptake, UEA-1 
lectin binding and CD31 expression. 

T1DM patients had lower EPC 
levels compared to healthy 
controls. 

Sibal et al., 2009 
Expression of 
CD133/CD34/VEGFR2/VE-cadherin 
from PBMNC using flow cytometry. 

EPC counts were lower in 
patients with T1DM compared 
to healthy controls. 

Asnaghi et al., 
2006 

Immunostaining with CD133 and CD31

Patients with T1DM and 
retinopathy had higher EPC 
levels than healthy controls and 
patients with T1DM and no 
retinopathy. 

  
In vitro culture of PBMNCs and 
detection of early-outgrowth EPCs 
colonies. 

Patients with T1DM and no 
retinopathy had lower EPC 
levels than healthy controls and 
patients with T1DM and 
retinopathy. 

Brunner et al., 
2008 

CPC surface antigen profile 
CD133+/CD34+ 

Patients with T1DM and 
proliferative retinopathy had 
increased levels of mature EPCs. 

  
EPCs surface antigen profile 
CD133+/CD34+/VEGFR2+ 

 
Patients with T1DM and 
nonproliferative retinopathy 
had decreased levels of EPCs. 

  
Mature surface antigen profile 
CD133+/CD34+/VEGFR2+/CD31+ 

  

  
Nonmature surface antigen profile 
CD133+/CD34+/VEGFR2+/CD31- 

  

Abbreviations: T1DM, type 1 diabetes mellitus; PBMNCs, peripheral blood mononuclear cells; EPCs, 
endothelial progenitor cells; CPC, circulating progenitor cells; Ac-LDL, acetylated-low density 
lipoprotein; UEA-1 lectin, Ulex Europaeus Lectin 

Table 2. Studies that have reported aberrant EPC numbers in patients with T1DM. 



 
Autoimmune Disorders – Pathogenetic Aspects 

 

330 

4.3 Endothelial progenitor cells in systemic sclerosis 

Aberrant EPC numbers within the circulation of patients with SSc has been described 
extensively (Table 3). The majority of these studies used flow cytometry to assess EPC 
numbers using various combinations of the markers CD133, CD34 and VEGFR2. As 
mentioned previously, the use of these markers does not unambiguously identify circulating 
EPCs as they are expressed by other progenitor cells and mature endothelial cells. Avouac et 
al describe the most stringent method of EPC identification, which involved culturing the 
PBMNCs from both SSc patients and healthy controls and assessing late-outgrowth EPC 
colony formation. This study showed that the number of late-outgrowth EPC colonies 
correlated with the number of circulating EPCs detected using the surface antigen profile 
Lin-/7AAD-/CD34+/CD133+/VEGFR2+ (Avouac et al., 2008).  
 

Reference Method of EPC identification Comments 

Allanore 
et al., 2007 

Expression of CD133/CD34 from 
PBMNC using flow cytometry. 

SSc patients had higher numbers of EPCs than 
osteoarthritis patients, but lower than RA 
patients. 

Yamaguchi 
et al., 2010 

In vitro culture of PBMNCs depleted for 
platelets.  

The number of early-outgrowth EPCs was 
higher in SSc patients compared to RA patients 
and healthy controls. 

  

Expression of 
CD34/VEGFR1/CD1a/CD83/CD80 
using flow cytometry and CD31/CD144 
by immunohistochemistry. 

Early-outgrowth EPCs derived from SSc 
patients showed greater vascular potential in 
vitro and in vivo than early-outgrowth EPCs 
derived from healthy controls. 

Kuwana 
et al., 2004 

Expression of CD133/CD34/VEGR2 
from CD34-enriched PBMNC using flow 
cytometry. 

EPCs were lower in SSc patients compared to 
RA patients and healthy controls. 

    
Levels of angiogenic factors within the 
circulation were higher in SSc patients than in 
health controls. 

Kuwana 
et al., 2006 

Expression of CD133/CD34/VEGR2 
from CD34-enriched PBMNC using flow 
cytometry. 

Atorvastatin treatment resulted in an increase 
in circulating EPCs from baseline, however 
levels did not reach those of healthy controls. 

Del Papa 
et al., 2004 

Surface antigen profile CD133+/CD34+ 
from PBMNC using flow cytometry. 

High levels of EPCs in patients with SSc and 
counts were higher in early stages of disease. 

Del Papa 
et al., 2006 

Surface antigen profile CD133+/CD45- 
from PBMNC and BM using flow 
cytometry. 

Circulating EPCs were higher in patients with 
early stage disease, but not in those with late 
stage disease. 

    
BM EPCs were reduced and functionally 
impaired. 

Avouac 
et al., 2008 

Surface antigen profile Lin-/7AAD-
/CD34+/CD133+/VEGFR2+ from 
PBMNCs detected using flow cytometry.

Circulating EPC levels were higher in SSc 
patients than in healthy controls. 

  
In vitro culture of PBMNCs and 
detection of late-outgrowth colonies. 

Positive correlation between the number of 
late-outgrowth EPC colonies and the level of 
circulating EPCs detected by flow cytometry in 
patients with SSc. 

Abbreviations: SSc, systemic sclerosis; PBMNCs, peripheral blood mononuclear cells; EPCs, endothelial 
progenitor cells; BM, bone marrow. 

Table 3. Studies that have reported aberrant EPC numbers in patients with SSc. 
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It has been well documented that circulating EPC numbers are elevated in patients with SSc 
(Allanore et al., 2007, Avouac et al., 2008, Del Papa et al., 2004, Del Papa et al., 2006, 
Yamaguchi et al., 2010).  However, two studies by Kuwana and colleagues have reported 
reduced EPC numbers in SSc patients (Kuwana et al., 2006, Kuwana et al., 2004).  Del Papa 
et al showed that in early stage SSc (3-5 years) there appears to be an increase in circulating 
EPCs and post 5 years, there appears to be either a normal or decreased number of 
circulating EPCs (Del Papa et al., 2006). A schematic of a potential role for EPCs in SSc is 
depicted in Figure 1 (lower panel). There is also evidence to suggest that the vascular 
function of EPCs from SSc patients is actually higher than that of healthy controls as early-
outgrowth EPCs from SSc patients are able to promote tube formation of HUVEC in vitro as 
well as enhance tumour growth and blood vessel formation in vivo (Yamaguchi et al., 2010).  

5. Therapeutic intervention targeting EPCs in autoimmune diseases 

There have been rapid advances in the field of therapeutic angiogenesis since the original 
description of bone marrow derived EPCs in 1997 (Asahara et al., 1997). Most of these 
bench-to-bed-side studies have been done in models of atherosclerosis and acute ischemic 
events such as myocardial infarction (MI) and critical limb ischemia. The first pre-clinical 
studies in these diseases were executed (within four years of their initial discovery) in a MI 
model in mice (Kocher et al., 2001) and demonstrated improvement in angiogenesis and 
cardiac function. This was followed by a series of publications showing the effectiveness of 
EPCs in preventing the extent of damage (Orlic et al., 2001) after MI as well as effectiveness 
in the large vessel occlusive damage (Griese et al., 2003) and prevention of atherosclerosis in 
a highly prone mouse model (Rausher et al, 2003). However, the exact mechanism of action 
of these interventions, in particular whether the benefit was due to neo-angiogenesis 
modulated by EPCs or due to paracrine mechanisms that improved the survival of resident 
endothelial cells, is not entirely clear.  
There was a rapid transition of these studies to humans as autologous marrow 
transplantation became a relatively safe and well established procedure in haematological 
malignancies and non-invasive methods to mobilise bone marrow progenitors became well 
established. In 2002, there were two studies published reporting the benefit of locally 
injecting ex-vivo expanded autologous bone marrow derived mononuclear cells in MI 
critical lower limb ischemia (Strauer et al., 2002, Tateishi-Yuyama et al., 2002). Furthermore, 
there have been multiple randomised controlled trials looking at the effectiveness of bone 
marrow derived cell therapies, which have been reviewed in a recent meta-analysis (Martin-
Rendon et al., 2008).  
The therapeutic use of EPCs in inflammatory diseases is more complicated as they have 
been implicated in pathogenesis of the inflammatory process as well as being an important 
cause of long term morbidity. There have been no studies of direct intervention with EPCs 
in autoimmune diseases. This is mainly due to their differential effects on the 
immunopathogenesis of these diseases. Attempts to understand this field are further 
bedevilled by observations of patients with systemic lupus erythematosus (SLE) who exhibit 
a significant decrease in circulating EPCs as well as a striking increase in premature 
atherosclerosis of unclear aetiology (de Leeuw et al., 2005, Westerweel et al., 2007) 
demonstrating no significant difference in EPC number between SLE patients without and 
with advanced coronary artery calcification (Baker et al., 2011). As detailed above, the 
inflammatory milieu in autoimmune diseases is characterized by neo-angiogenesis and as 
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such it would seem that increased EPCs might contribute to inflammation. On the other 
hand, the most common cause of long term morbidity and mortality in these diseases is 
attributed to atherosclerosis and its complications where EPCs might have beneficial effect. 
There have been numerous studies looking at the effect of various disease modifying 
therapies in patients with autoimmune diseases on the circulating EPCs (both monocytic 
and haemangioblastic) reviewed in a recent article (Westerweel and Verhaar, 2009). These 
studies show an increase in the levels of circulating haemangioblastic EPCs after various 
immunosuppressive therapies including anti-TNF drugs, corticosteroids and 
hydroxychloroquine in these patients. However, the association of these changes with long 
term clinically useful outcome, such as incidence of atherosclerosis and coronary artery 
disease, has not been demonstrated. This finding is intriguing as it is well known from long 
term clinical studies that corticosteroids are known to promote atherosclerosis and anti-TNF 
medications reduce long term morbidity and mortality due to this complication (Kaplan, 
2010). Moreover, methotrexate, a commonly used disease modifying agent in various 
autoimmune diseases is known to induce EPC apoptosis in vitro (Herbrig et al., 2006) but 
has beneficial effects in patients.  
There needs to be better understanding of the role of EPCs in the different stages of the 
disease, i.e. early active versus long standing, and its pathophysiological implications 
relating to long term outcome of patients to be able to design studies with intervention 
directed at EPCs. The knowledge of various paracrine mechanisms involved in the 
beneficial effects of EPCs in atherosclerosis models might help to dissect the pathways 
involved in neo-angiogenesis versus survival of resident endothelial cells. This knowledge 
can then be exploited to design intervention at various stages of autoimmune diseases.        

6. Conclusions 

Faced with an ever-increasing burden of autoimmune diseases such as RA, T1DM and SSc, 
modern medicine is confronted with the need to provide new therapies that not only mitigate 
the symptoms of these diseases but may also facilitate regeneration of organ function. Given 
their role in development and in maintaining and repairing injured vessels, stem and 
progenitor cells represent an exciting alternative for regenerative medicine. Since their first 
identification over a decade ago, the use of EPCs as a diagnostic tool or therapeutic was 
greeted with great enthusiasm. However, progress in their clinical application remains limited 
by identification and ex vivo expansion factors, and as a result, variable functional attributes. It 
can be seen from the aforementioned examples that the timing and methods used to detect 
EPCs can greatly affect the outcome of studies. The major issues associated with EPC 
identification within the circulation are (1) identifying the bone marrow progenitors from the 
circulating mature endothelial cells and (2) defining the distinction between haemangioblastic 
late-outgrowth EPCs and monocytic early-outgrowth EPCs. These matters are the focus of 
ongoing research, especially the search for a unique EPC marker. Nevertheless, EPCs are a 
robust biomarker of vascular dysfunction (based on their direct interaction and influence on 
endothelial function), and the unique ability to monitor their peripheral number or function as 
a marker of response to therapy. Notwithstanding the current knowledge regarding EPC cell 
signalling, activation and migration, the precise mechanisms of activation of these cells and 
their functional significance is not known. In the research setting, continued understanding of 
EPC function improves insight into vasculogenesis, and the pathology of vascular dysfunction 
in autoimmune disease.  
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