5 research outputs found

    Development of Methods for Determining the Coordinates of Firing Positions of Roving Mortars by A Network of Counter-battery Radars

    Full text link
    The mathematical formulation of the problem of determining the coordinates of targets in the network of counter-battery radars is formulated. It has been established that the problem of estimating the coordinates of targets in the network of counter-battery radars for an excessive number of estimates of primary coordinates should be considered as a statistical problem. The method for determining the coordinates of the firing positions of roving mortars has been improved, in which, in contrast to the known ones, the coordinates of targets on the flight trajectory are coordinated with space and time and the information is processed by a network of counter-battery radars. The developed simulation mathematical model for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars. Simulation modeling of the method for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars has been carried out. It has been established that the use of a network of radars makes it possible to increase the accuracy of determining the coordinates of the firing means on average from 23 % to 71 %, depending on the number of counter-battery radars in the network. It has also been found that the appropriate number of counter-battery warfare radars in the network is three or four. A further increase in the number of counter-battery warfare radars in the network does not lead to a significant increase in the accuracy of determining the coordinates of artillery and mortar firing positions. In carrying out further research, it is necessary to develop a method for the spatial separation of elements of a group of targets and interfering objects by a network of counter-battery warfare radar

    A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi

    Get PDF
    Abstract Background Anopheles sacharovi is a dominant malaria vector species in South Europe and the Middle East which has a highly plastic behaviour at both adult and larval stages. Such plasticity has prevented this species from eradication by several anti-vector campaigns. The development of new genome-based strategies for vector control will benefit from genome sequencing and physical chromosome mapping of this mosquito. Although a cytogenetic photomap for chromosomes from salivary glands of An. sacharovi has been developed, no cytogenetic map suitable for physical genome mapping is available. Methods Mosquitoes for this study were collected at adult stage in animal shelters in Armenia. Polytene chromosome preparations were prepared from ovarian nurse cells. Fluorescent in situ hybridization (FISH) was performed using PCR amplified probes. Results This study constructed a high-quality standard photomap for polytene chromosomes from ovarian nurse cells of An. sacharovi. Following the previous nomenclature, chromosomes were sub-divided into 39 numbered and 119 lettered sub-divisions. Chromosomal landmarks for the chromosome recognition were described. Using FISH, 4 PCR-amplified genic probes were mapped to the chromosomes. The positions of the probes demonstrated gene order reshuffling between An. sacharovi and Anopheles atroparvus which has not been seen cytologically. In addition, this study described specific chromosomal landmarks that can be used for the cytotaxonomic diagnostics of An. sacharovi based on the banding pattern of its polytene chromosomes. Conclusions This study constructed a high-quality standard photomap for ovarian nurse cell chromosomes of An. sacharovi and validated its utility for physical genome mapping. Based on the map, cytotaxonomic features for identification of An. sacharovi have been described. The cytogenetic map constructed in this study will assist in creating a chromosome-based genome assembly for this mosquito and in developing cytotaxonomic tools for identification of other species from the Maculipennis group
    corecore