7,809 research outputs found

    Strengthening impact assessment: a call for integration and focus

    Get PDF
    We suggest that the impact assessment community has lost its way based on our observation that impact assessment is under attack because of a perceived lack of efficiency. Specifically, we contend that the proliferation of different impact assessment types creates separate silos of expertise and feeds arguments for not only a lack of efficiency but also a lack of effectiveness of the process through excessive specialisation and a lack of interdisciplinary practice. We propose that the solution is a return to the basics of impact assessment with a call for increased integration around the goal of sustainable development and focus through better scoping. We rehearse and rebut counter arguments covering silo-based expertise, advocacy, democracy, sustainability understanding and communication. We call on the impact assessment community to rise to the challenge of increasing integration and focus, and to engage in the debate about the means of strengthening impact assessment

    The Imprint of Gravitational Waves on the Cosmic Microwave Background

    Get PDF
    Long-wavelength gravitational waves can induce significant temperature anisotropy in the cosmic microwave background. Distinguishing this from anisotropy induced by energy density fluctuations is critical for testing inflationary cosmology and theories of large-scale structure formation. We describe full radiative transport calculations of the two contributions and show that they differ dramatically at angular scales below a few degrees. We show how anisotropy experiments probing large- and small-angular scales can combine to distinguish the imprint due to gravitational waves.Comment: 11 pages, Penn Preprint-UPR-

    Cosmological predictions from the Misner brane

    Get PDF
    Within the spirit of five-dimensional gravity in the Randall-Sundrum scenario, in this paper we consider cosmological and gravitational implications induced by forcing the spacetime metric to satisfy a Misner-like symmetry. We first show that in the resulting Misner-brane framework the Friedmann metric for a radiation dominated flat universe and the Schwarzschild or anti-de Sitter black holes metrics are exact solutions on the branes, but the model cannot accommodate any inflationary solution. The horizon and flatness problems can however be solved in Misner-brane cosmology by causal and noncausal communications through the extra dimension between distant regions which are outside the horizon. Based on a semiclassical approximation to the path-integral approach, we have calculated the quantum state of the Misner-brane universe and the quantum perturbations induced on its metric by brane propagation along the fifth direction. We have then considered testable predictions from our model. These include a scale-invariant spectrum of density perturbations whose amplitude can be naturally accommodated to the required value 10−5−10−6^{-5}-10^{-6}, and a power spectrum of CMB anisotropies whose acoustic peaks are at the same sky angles as those predicted by inflationary models, but having much smaller secondary-peak intensities. These predictions seem to be compatible with COBE and recent Boomerang and Maxima measurementsComment: 16 pages, RevTe

    SK2 channels are required for function and long-term survival of efferent synapses on mammalian outer hair cells

    Get PDF
    Cochlear hair cells use SK2 currents to shape responses to cholinergic efferent feedback from the brain. Using SK2-/- mice, we demonstrate that, in addition to their previously defined role in modulating hair cell membrane potentials, SK2 channels are necessary for long-term survival of olivocochlear fibers and synapses. Loss of the SK2 gene also results in loss of electrically driven olivocochlear effects in vivo, and down regulation of ryanodine receptors involved in calcium-induced calcium release, the main inducer of nAChR evoked SK2 activity. Generation of double-null mice lacking both the α10 nAChR gene, loss of which results in hypertrophied olivocochlear terminals, and the SK2 gene, recapitulates the SK2-/- synaptic phenotype and gene expression, and also leads to down regulation of α9 nAChR gene expression. The data suggest a hierarchy of activity necessary to maintain early olivocochlear synapses at their targets, with SK2 serving an epistatic, upstream, role to the nAChRs.Fil: Murthy, Vidya. Tufts University; Estados UnidosFil: Maison, Stéphane F.. Massachusetts Eye and Ear Infirmary; Estados Unidos. Harvard Medical School; Estados UnidosFil: Taranda, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Tufts University; Estados UnidosFil: Haque, Nadeem. University of Notre Dame; Estados UnidosFil: Bond, Chris T.. Oregon Health Sciences University; Estados UnidosFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Adelman, John P.. Oregon Health Sciences University; Estados UnidosFil: Liberman, M. Charles. Massachusetts Eye and Ear Infirmary; Estados Unidos. Harvard Medical School; Estados UnidosFil: Vetter, Douglas E.. Tufts University; Estados Unido

    Hubble Space Telescope Imaging of the Expanding Nebular Remnant of the Recurrent Nova RS Ophiuchi (2006)

    Full text link
    We report Hubble Space Telescope imaging obtained 155 days after the 2006 outburst of RS Ophiuchi. We detect extended emission in both [O III] and [Ne V] lines. In both lines, the remnant has a double ring structure. The E-W orientation and total extent of these structures (580+-50 AU at d=1.6kpc) is consistent with that expected due to expansion of emitting regions imaged earlier in the outburst at radio wavelengths. Expansion at high velocity appears to have been roughly constant in the E-W direction (v_{exp} = 3200+-300 km/s in the plane of the sky), with tentative evidence of deceleration N-S. We present a bipolar model of the remnant whose inclination is consistent with that of the central binary. The true expansion velocities of the polar components are then v = 5600+-1100 km/s. We suggest that the bipolar morphology of the remnant results from interaction of the outburst ejecta with a circumstellar medium that is significantly denser in the equatorial regions of the binary than at the poles. This is also consistent with observations of shock evolution in the X-ray and the possible presence of dust in the infrared. Furthermore, it is in line with models of the shaping of planetary nebulae with close binary central systems, and also with recent observations relating to the progenitors of Type Ia supernovae, for which recurrent novae are a proposed candidate. Our observations also reveal more extended structures to the S and E of the remnant whose possible origin is briefly discussed.Comment: 13 pages, 2 figures, accepted for publication in ApJ

    Can MONDian vector theories explain the cosmic speed up ?

    Full text link
    Generalized Einstein - Aether vector field models have been shown to provide, in the weak field regime, modifications to gravity which can be reconciled with the successfull MOND proposal. Very little is known, however, on the function F(K) defining the vector field Lagrangian so that an analysis of the viability of such theories at the cosmological scales has never been performed. As a first step along this route, we rely on the relation between F(K) and the MOND interpolating function Ό(a/a0)\mu(a/a_0) to assign the vector field Lagrangian thus obtaining what we refer to as "MONDian vector models". Since they are able by construction to recover the MOND successes on galaxy scales, we investigate whether they can also drive the observed accelerated expansion by fitting the models to the Type Ia Supernovae data. Should be this the case, we have a unified framework where both dark energy and dark matter can be seen as different manifestations of a single vector field. It turns out that both MONDian vector models are able to well fit the low redshift data on Type Ia Supernovae, while some tension could be present in the high z regime.Comment: 15 pages, 5 tables, 4 figures, accepted for publication on Physical Review

    Power Spectrum of Primordial Inhomogeneity Determined from the 4-Year COBE DMR Sky Maps

    Get PDF
    Fourier analysis and power spectrum estimation of the cosmic microwave background anisotropy on an incompletely sampled sky developed by Gorski (1994) has been applied to the high-latitude portion of the 4-year COBE DMR 31.5, 53 and 90 GHz sky maps. Likelihood analysis using newly constructed Galaxy cuts (extended beyond |b| = 20deg to excise the known foreground emission) and simultaneously correcting for the faint high latitude galactic foreground emission is conducted on the DMR sky maps pixelized in both ecliptic and galactic coordinates. The Bayesian power spectrum estimation from the foreground corrected 4-year COBE DMR data renders n ~ 1.2 +/- 0.3, and Q_{rms-PS} ~ 15.3^{+3.7}_{-2.8} microK (projections of the two-parameter likelihood). These results are consistent with the Harrison-Zel'dovich n=1 model of amplitude Q_{rms-PS} ~ 18 microK detected with significance exceeding 14sigma (dQ/Q < 0.07). (A small power spectrum amplitude drop below the published 2-year results is predominantly due to the application of the new, extended Galaxy cuts.)Comment: 9 pages of text in LaTeX, 1 postscript Table, 4 postscript figures (2 color plates), submitted to The Astrophysical Journal (Letters

    Ground--state energies and widths of 5^5He and 5^5Li

    Full text link
    We extract energies and widths of the ground states of 5^5He and 5^5Li from recent single--level R--matrix fits to the spectra of the 3^3H(d,Îł({\rm d},\gamma)5^5He and the 3^3He(d,Îł({\rm d},\gamma)5^5Li reactions. The widths obtained differ significantly from the formal R--matrix values but they are close to those measured as full widths at half maxima of the spectra in various experiments. The energies are somewhat lower than those given by usual estimates of the peak positions. The extracted values are close to the S--matrix poles calculated previously from the multi--term analyses of the N-4^4He elastic scattering data.Comment: 3 pages, no figures, uses revtex.sty, accepted for publication in PRC, uuencoded postscript and tex-files available at ftp://is1.kph.tuwien.ac.at/pub/ohu/fwidth.u

    Loitering universe models in light of the CMB

    Full text link
    Spatially flat loitering universe models have recently been shown to arise in the context of brane world scenarios. Such models allow more time for structure formation to take place at high redshifts, easing, e.g., the tension between the observed and predicted evolution of the quasar population with redshift. While having the desirable effect of boosting the growth of structures, we show that in such models the position of the first peak in the power spectrum of the cosmic microwave background anisotropies severely constrains the amount of loitering at high redshifts.Comment: 4 pages, 3 figures. Included discussion of the linear growth factor. Matches version accepted for publication in PR
    • 

    corecore