606 research outputs found

    Mapping the domains of CD134 as a functional receptor for feline immunodeficiency virus (FIV)

    Get PDF
    The feline homologue of CD134 (fCD134) is the primary binding receptor for feline immunodeficiency virus (FIV), targeting the virus preferentially to activated CD4+ helper T cells. However, strains of FIV differ in their utilisation of CD134; the prototypic strain PPR, requires a minimal determinant in CRD1 of fCD134 to confer near optimal receptor function while strains such as GL8 require additional determinants in the CD134 CRD2. We map this determinant to a loop in CRD2 governing the interaction between the receptor and its ligand; substitution of amino acids S78N,S79Y,K80E restored full viral receptor activity to the CDR2 of human CD134 in the context of feline CD134 with tyrosine-79 appearing to be the critical residue for restoration of receptor function

    Mapping the domains of CD134 as a functional receptor for feline immunodeficiency virus (FIV)

    Get PDF
    The feline homologue of CD134 (fCD134) is the primary binding receptor for feline immunodeficiency virus (FIV), targeting the virus preferentially to activated CD4+ helper T cells. However, strains of FIV differ in their utilisation of CD134; the prototypic strain PPR, requires a minimal determinant in CRD1 of fCD134 to confer near optimal receptor function while strains such as GL8 require additional determinants in the CD134 CRD2. We map this determinant to a loop in CRD2 governing the interaction between the receptor and its ligand; substitution of amino acids S78N,S79Y,K80E restored full viral receptor activity to the CDR2 of human CD134 in the context of feline CD134 with tyrosine-79 appearing to be the critical residue for restoration of receptor function

    Retinal Topographic Maps: A Glimpse into the Animals’ Visual World

    Get PDF
    The vertebrates’ retina has a highly conserved laminar organization of 10 alternating nuclear and plexiform layers. Species differences in the retinal specializations, i.e., areas of higher cell density, among the species, represent specific regions of the visual field of higher importance for a better spatial resolution and indicate distinct evolutionary pressures on the structures of the visual system, which can be related to many aspects of the species evolutionary history. In this chapter, we analyzed the density and distribution of cells of the retinal ganglion cell layer (GCL) and estimated the upper limits of the spatial resolving power of 12 species of snakes from the Colubridae family, 6 diurnal and 6 nocturnal, which inhabit different habitats. Our results revealed lower visual acuity in nocturnal species, compared to diurnal, and we observed different types of retinal specialization, horizontal streak, area centralis, or scattered distribution, with higher cell density in different retinal regions, depending on the species. These variations may be related to ecological and behavioral features, such as daily activity pattern, habitat, and substrate preferentially occupied, hunting strategies and diet. This comparative study indicates the complexity of the adaptive strategies of the snakes’ visual system

    Spin and Conductance-Peak-Spacing Distributions in Large Quantum Dots: A Density Functional Theory Study

    Full text link
    We use spin-density-functional theory to study the spacing between conductance peaks and the ground-state spin of 2D model quantum dots with up to 200 electrons. Distributions for different ranges of electron number are obtained in both symmetric and asymmetric potentials. The even/odd effect is pronounced for small symmetric dots but vanishes for large asymmetric ones, suggesting substantially stronger interaction effects than expected. The fraction of high-spin ground states is remarkably large.Comment: 4 pages, 3 figure

    Hepatic Steatosis and Thyroid Function Tests in Overweight and Obese Children

    Get PDF
    Objectives. Associations between thyroid function and nonalcoholic fatty liver disease (NAFLD) are unknown in childhood. Thus, the aim of the present study was to investigate in 402 consecutive overweight/obese children the association between thyroid function tests and hepatic steatosis as well as metabolic variables. Methods. Hepatic steatosis was diagnosed by ultrasound after exclusion of infectious and metabolic disorders. Fasting serum samples were taken for determination of thyroid function (TSH, FT4, and FT3), along with alanine aminotransferase (ALT), lipid profile, glucose, insulin, and insulin resistance (IR). Results. Eighty-eight children (21.9%) had TSH above the normal range (>4.0 mIU/L). FT3 and FT4 were within the reference intervals in all subjects. Elevated TSH was associated with increased odds of having hepatic steatosis (OR 2.10 (95% CI, 1.22–3.60)), hepatic steatosis with elevated ALT (2.42 (95% CI, 1.29–4.51)), hypertriglyceridemia, elevated total cholesterol, and IR as well as metabolic syndrome (considered as a single clinical entity), after adjustment for age, gender, pubertal status, and body mass index-SD score (or waist circumference). Conclusions. In overweight/obese children, elevated TSH concentration is a significant predictor of hepatic steatosis and lipid and glucose dysmetabolism, independently of the degree of total and visceral obesity

    A method for gait events detection based on low spatial resolution pressure insoles data

    Get PDF
    The accurate identification of initial and final foot contacts is a crucial prerequisite for obtaining a reliable estimation of spatio-temporal parameters of gait. Well-accepted gold standard techniques in this field are force platforms and instrumented walkways, which provide a direct measure of the foot–ground reaction forces. Nonetheless, these tools are expensive, non-portable and restrict the analysis to laboratory settings. Instrumented insoles with a reduced number of pressure sensing elements might overcome these limitations, but a suitable method for gait events identification has not been adopted yet. The aim of this paper was to present and validate a method aiming at filling such void, as applied to a system including two insoles with 16 pressure sensing elements (element area = 310 mm2), sampling at 100 Hz. Gait events were identified exploiting the sensor redundancy and a cluster-based strategy. The method was tested in the laboratory against force platforms on nine healthy subjects for a total of 801 initial and final contacts. Initial and final contacts were detected with low average errors of (about 20 ms and 10 ms, respectively). Similarly, the errors in estimating stance duration and step duration averaged 20 ms and <10 ms, respectively. By selecting appropriate thresholds, the method may be easily applied to other pressure insoles featuring similar requirements

    Streamlined design of a self-inactivating feline immunodeficiency virus vector for transducing ex vivo dendritic cells and T lymphocytes.

    Get PDF
    BACKGROUND: Safe and efficient vector systems for delivering antigens or immunomodulatory molecules to dendritic cells (DCs), T lymphocytes or both are considered effective means of eliciting adaptive immune responses and modulating their type, extent, and duration. As a possible tool toward this end, we have developed a self-inactivating vector derived from feline immunodeficiency virus (FIV) showing performance characteristics similar to human immunodeficiency virus-derived vectors but devoid of the safety concerns these vectors have raised. METHODS: The pseudotyped FIV particles were generated with a three-plasmid system consisting of: the packaging construct, providing Gag, Pol and the accessory proteins; the vector(s), basically containing FIV packaging signal (psi), Rev responsive element, R-U5 region at both ends, and the green fluorescent protein as reporter gene; and the Env plasmid, encoding the G protein of vesicular stomatitis virus (VSV-G) or the chimeric RD114 protein. Both packaging and vector constructs were derived from p34TF10, a replication competent molecular clone of FIV. The pseudotyped particles were produced by transient transfection in the Crandell feline fibroblast kidney (CrFK) or the human epithelial (293T) cell line. RESULTS: To broaden its species tropism, the final vector construct was achieved through a series of intermediate constructs bearing a longer psi, the FIV central polypurin tract sequence (cPPT), or the woodchuck hepatitis post-regulatory element (WPRE). These constructs were compared for efficiency and duration of transduction in CrFK or 293T cells and in the murine fibroblast cell line NIH-3T3. Whereas psi elongation and cPPT addition did not bring any obvious benefit, insertion of WPRE downstream GFP greatly improved vector performances. To maximize the efficiency of transduction for ex-vivo murine DCs and T-lymphocytes, this construct was tested with VSV-G or RD114 and using different transduction protocols. The results indicated that the FIV construct derived herein stably transduced both cell types, provided that appropriate vector makeup and transduction protocol were used. Further, transduced DCs underwent changes suggestive of an induced maturation. CONCLUSION: In contrast to previously described FIV vectors that were poorly efficient in delivering genetic material to DCs and T lymphocytes, the vector developed herein has potential for use in experimental immunization strategies

    Development of Feline Immunodeficiency Virus ORF-A (tat) Mutants: In Vitro and in Vivo Characterization

    Get PDF
    AbstractA functional ORF-A is essential for efficient feline immunodeficiency virus replication in lymphocytes. We have characterized a series of mutants of the Petaluma strain, derived from p34TF10 and having different combinations of stop codons and increasingly long deletions in ORF-A. Six clones proved fully replicative in fibroblastoid Crandell feline kidney cells and monocyte-derived macrophage cultures but failed to replicate in T cell lines and primary lymphoblasts. Cats inoculated with three selected mutants had considerably milder infections than controls given intact ORF-A virus. In vivo, the mutants maintained growth properties similar to those in vitro for at least 7 months, except that replication in lymphoid cells was strongly reduced but not ablated. One mutant underwent extensive ORF-A changes without, however, reverting to wild-type. Antiviral immune responses were feeble in all cats, suggesting that viral loads were too low to represent a sufficiently powerful antigenic stimulus

    The scotogenic contact lens: a novel device for treating binocular diplopia

    Get PDF
    Binocular diplopia is a debilitating visual symptom requiring immediate intervention for symptomatic control, whether or not definitive treatment is eventually possible. Where prismatic correction is infeasible, the current standard is occlusion, either by a patch or an opaque contact lens. In eliminating one problem-diplopia-occlusive techniques invariably create another: reduced peripheral vision. Crucially, this is often unnecessary, for the reduced spatial resolution in the periphery limits its contribution to the perception of diplopia. Here, we therefore introduce a novel soft contact lens device that instead creates a monocular central scotoma inversely mirroring the physiological variation in spatial acuity across the monocular visual field, thereby suppressing the diplopia with minimal impact on the periphery. We compared the device against standard eye patching in 12 normal subjects with prism-induced binocular diplopia and 12 patients with binocular diplopia of diverse causes. Indexed by self-reported scores and binocular perimetry, the scotogenic contact lens was comparably effective in eliminating the diplopia while significantly superior in acceptability and its impact on the peripheral visual field. This simple, inexpensive, non-invasive device may thus be an effective new tool in the treatment of a familiar but still troublesome clinical problem

    The α5 Subunit Regulates the Expression and Function of α4*-Containing Neuronal Nicotinic Acetylcholine Receptors in the Ventral-Tegmental Area

    Get PDF
    Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA
    • …
    corecore