2,858 research outputs found

    Decomposition and temperature sensitivity of fine root and leaf litter of 43 mediterranean species

    Get PDF
    Aims: Data on the decomposition of fine roots are scarce for the Mediterranean basin. This work aims to compare chemical traits, decomposition rate, and temperature sensitivity (Q10) for root and leaf litter of 43 Mediterranean species. Methods: We carried out a two-years litterbag decomposition experiment using 43 fine roots litter and leaf litter types incubated in laboratory conditions at three different temperatures, i.e. 4 °C, 14 °C, and 24 °C. Litter was characterized for carbon (C), nitrogen (N), lignin and cellulose concentration, C/N, and lignin/N ratios. Results: Fine root litter had lower N content but higher lignin concentration, lignin/N, and C/N ratios compared to leaf litter. The decay rate of fine root litter was slower than leaf litter. For both tissues, the decay rate was negatively associated with lignin concentration, lignin/N, and C/N ratios but positively with N concentration. Q10 was higher for fine root than leaf litter, with a positive correlation with lignin while negative with N concentration. Conclusions: Our findings demonstrate a higher Q10 accompanied by a slower decomposition rate of fine root litter compared to leaf litter in Mediterranean ecosystems. These results must be considered in modeling organic C at the ecosystem scale

    Pea-Wheat Rotation Affects Soil Microbiota Diversity, Community Structure, and Soilborne Pathogens

    Get PDF
    Intensive cultivation based on monocultures has a significant impact on ecosystem function, and sustainable agriculture must rely on alternative methods, including crop rotation. On the Canadian prairies, the use of pulse crops is a common practice, but few studies have investigated the impact on soil microorganisms. Here, we studied the effect of pea, wheat, pea–wheat rotation, and fallow in bulk soil bacterial and fungal communities. We characterized soil microbiota by high-throughput sequencing of 16S and 18S rRNA genes for bacteria and eukaryotes. Different crop rotations and fallow significantly modified soil community composition, as well as bacterial and fungal diversity. Pea alone caused a strong reduction of bacterial and fungal richness and diversity compared to wheat, pea–wheat rotation, and fallow. Notably, pea–wheat rotation increased the abundance of Fusarium graminearum compared to other management practices. The bacterial community was less responsive to crop rotation identity compared to the fungal microbiota, and we found minor differences at the phylum level, with an increase in Actinobacteria in fallow and Firmicutes in wheat. In summary, our study demonstrated that rotations alter bulk soil microbial community diversity and composition in Canadian prairies. The frequent use of pea in rotation with wheat should be carefully evaluated, balancing their ecological effects on nitrogen mineralization, water conservation, and impact on beneficial, as well as pathotrophic, fungi

    Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline

    Get PDF
    Understanding processes controlling forest dynamics has become particularly important in the context of ongoing climate change, which is altering the ecological fitness and resilience of species worldwide. However, whether forest communities would be threatened by projected macroclimate change or unaffected due to the controlling effect of local site conditions is still a matter for debate. After all, forest canopy buffer climate extremes and promote microclimatic conditions, which matters for functional plant response, and act as refugia for understory species in a changing climate. Yet precisely how microclimatic conditions change in response to climate warming will depend on the extent to which vegetation structure and local topography shape air and soil temperature. In this study, we posited that forest microclimatic buffering is sensitive to local topographic conditions and canopy cover, and using meteorological stations equipped with data-loggers we measured this effect during 1 year across a climate gradient (considering aspect as a surrogate of local topography) in a Mediterranean beech treeline growing in contrasting aspects in southern Italy. During the growing season, the below-canopy near-ground temperatures were, on average, 2.4 and 1.0 °C cooler than open-field temperatures for south and north-west aspects, respectively. Overall, the temperature offset became more negative (that is, lower under-canopy temperatures at the treeline) as the open-field temperature increased, and more positive (that is, higher under-canopy temperatures at the treeline) as the open-field temperature decreased. The buffering effect was particularly evident for the treeline on the south-facing slope, where cooling of near-ground temperature was as high as 8.6 °C for the maximum temperature (in August the offset peaked at 10 °C) and as high as 2.5 °C for the average temperature. In addition, compared to the south-facing slope, the northern site exhibited less decoupling from free-air environment conditions and low variability in microclimate trends that closely track the free-air biophysical environment. Although such a decoupling effect cannot wholly isolate forest climatic conditions from macroclimate regional variability in the south-facing treeline, it has the potential to partly offset the regional macroclimatic warming experienced in the forest understory due to anthropogenic climate change

    Topoclimate effect on treeline elevation depends on the regional framework: A contrast between Southern Alps (New Zealand) and Apennines (Italy) forests

    Get PDF
    Deciphering the spatial patterns of alpine treelines is critical for understanding the ecosystem processes involved in the persistence of tree species and their altitudinal limit. Treelines are thought to be controlled by temperature, and other environmental variables but they have rarely been investigated in regions with different land-use change legacies. Here, we systematically investigated treeline elevation in the Apennines (Italy) and Southern Alps (New Zealand) with contrasting human history but similar biogeographic trajectories, intending to identify distinct drivers that affect their current elevation and highlight their respective peculiarities. Over 3622 km of Apennines, treeline elevation was assessed in 302 mountain peaks and in 294 peaks along 4504 km of Southern Alps. The major difference between the Southern Alps and Apennines treeline limit is associated with their mountain aspects. In the Southern Alps, the scarcely anthropized Nothofagus treeline elevation was higher on the warmer equator-facing slopes than on the pole-facing ones. Contrary to what would be expected based on temperature limitation, the elevation of Fagus sylvatica treelines in the Apennines was higher on colder, pole-facing slopes than on human-shaped equator-facing, warmer mountainsides. Pervasive positive correlations were found between treeline elevation and temperature in the Southern Alps but not in the Apennines. While the position of the Fagus and Nothofagus treelines converge on similar isotherms of annual average temperature, a striking isothermal difference between the temperatures of the hottest month on which the two taxonomic groups grow exists. We conclude that actual treeline elevation reflects the ecological processes driven by a combination of local-scale topoclimatic conditions, and human disturbance legacy. Predicting dynamic processes affecting current and future alpine treeline position requires further insight into the modulating influences that are currently understood at a regional scale

    Another X-ray UFO without a momentum-boosted molecular outflow: ALMA CO(1–0) observations of the galaxy pair IRAS 05054+1718

    Get PDF
    We present Atacama Large Millimetre/submillimetre Array (ALMA) CO(1–0) observations of the nearby infrared luminous (LIRG) galaxy pair IRAS 05054+1718 (also known as CGCG 468-002), as well as a new analysis of X-ray data of this source collected between 2012 and 2021 using the Nuclear Spectroscopic Telescope Array (NuSTAR), Swift, and the XMM-Newton satellites. The western component of the pair, NED01, hosts a Seyfert 1.9 nucleus that is responsible for launching a powerful X-ray ultra-fast outflow (UFO). Our X-ray spectral analysis suggests that the UFO could be variable or multi-component in velocity, ranging from v/c ∼ −0.12 (as seen in Swift) to v/c ∼ −0.23 (as seen in NuSTAR), and constrains its momentum flux to be poutX−ray ∼ (4 ± 2) × 1034 g cm s−2. The ALMA CO(1–0) observations, obtained with an angular resolution of 2.200, although targeting mainly NED01, also include the eastern component of the pair, NED02, a less-studied LIRG with no clear evidence of an active galactic nucleus (AGN). We study the CO(1–0) kinematics in the two galaxies using the 3D-BAROLO code. In both sources we can model the bulk of the CO(1–0) emission with rotating disks and, after subtracting the best-fit models, we detect compact residual emission at S/N = 15 within ∼3 kpc of the centre. A molecular outflow in NED01, if present, cannot be brighter than such residuals, implying an upper limit on its outflow rate of M outmol . 19 ± 14 M yr−1 and on its momentum rate of pmolout . (2.7 ± 2.4) × 1034 g cm s−1. Combined with the revised energetics of the X-ray wind, we derive an upper limit on the momentum rate ratio of pmolout / pXout−ray < 0.67. We discuss these results in the context of the expectations of AGN feedback models, and we propose that the X-ray disk wind in NED01 has not significantly impacted the molecular gas reservoir (yet), and we can constrain its effect to be much smaller than expectations of AGN ‘energy-driven’ feedback models. We also consider and discuss the hypothesis of asymmetries of the molecular disk not properly captured by the 3D-BAROLO code. Our results highlight the challenges in testing the predictions of popular AGN disk-wind feedback theories, even in the presence of good-quality multi-wavelength observations

    Another X-ray UFO without a momentum-boosted molecular outflow

    Full text link
    We present ALMA CO(1-0) observations of the nearby LIRG galaxy pair IRAS05054+1718 with a new analysis of X-ray data collected between 2012 and 2021 using NuSTAR, Swift, and XMM-Newton. The western component of the pair, NED01, hosts a Seyfert 1.9 nucleus launching a powerful X-ray UFO. Our X-ray spectral analysis suggests the UFO could be variable or multi-component in velocity and constrains its momentum flux to p˙outX−ray∼(4±2)×1034\dot p^{X-ray}_{out} \sim (4\pm2)\times 10^{34} gcms−2^{-2}. ALMA CO(1-0) observations include also the eastern component of the pair, a LIRG with no clear evidence for an AGN. We study the CO(1-0) kinematics in the two galaxies using the 3D-BAROLO code. In both sources, we can model the bulk of the CO(1-0) emission with rotating disks and, after subtracting the best-fit models, we detect compact residual emission at S/N=15 within ∼3\sim3kpc from the centre. A molecular outflow in NED01, if present, cannot be brighter than such residuals, implying an upper limit on its outflow rate of M˙outmol≲19±14 M⊙ yr−1\dot{M}^{mol}_{out} \lesssim 19\pm14~M_{\odot}~yr^{-1} and on its momentum rate of p˙outmol≲(2.7±2.4)×1034\dot p^{mol}_{out} \lesssim (2.7\pm2.4) \times 10^{34}gcms−1^{-1}. Combined with the revised energetics of the X-ray wind, we derive an upper limit on the momentum rate ratio of p˙outmol/p˙outX−ray<0.67\dot{p}^{mol}_{out}/\dot{p}^{X-ray}_{out}<0.67. We discuss these results in the context of the expectations of AGN feedback models, and we propose the X-ray disk wind in NED01 has not significantly impacted the molecular gas reservoir (yet), and we can constrain its effect to be much smaller than expectations of AGN ''energy-driven'' feedback models. We also consider and discuss the hypothesis of asymmetries of the molecular disk not properly captured by the 3D-BAROLO code. Our results highlight the challenges in testing the predictions of popular AGN disk-wind feedback theories, even with good quality multi-wavelength observations.Comment: Accepted by A&

    Arabidopsis thaliana response to extracellular dna: Self versus nonself exposure

    Get PDF
    The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant\u2013soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self-(conspecific) and nonself-(heterologous) DNA. The results highlight that cells distinguish self-from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular selfor nonself-DNA and are discussed in the context of Damage-and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses

    Transcriptomics and metabolomics integration reveals redox-dependent metabolic rewiring in breast cancer cells

    Get PDF
    Rewiring glucose metabolism toward aerobic glycolysis provides cancer cells with a rapid generation of pyruvate, ATP, and NADH, while pyruvate oxidation to lactate guarantees refueling of oxidized NAD+ to sustain glycolysis. CtPB2, an NADH-dependent transcriptional co-regulator, has been proposed to work as an NADH sensor, linking metabolism to epigenetic transcriptional reprogramming. By integrating metabolomics and transcriptomics in a triple-negative human breast cancer cell line, we show that genetic and pharmacological down-regulation of CtBP2 strongly reduces cell proliferation by modulating the redox balance, nucleotide synthesis, ROS generation, and scavenging. Our data highlight the critical role of NADH in controlling the oncogene-dependent crosstalk between metabolism and the epigenetically mediated transcriptional program that sustains energetic and anabolic demands in cancer cells
    • …
    corecore