2,524 research outputs found

    Improved Action Functionals in Non-Perturbative Quantum Gravity

    Full text link
    Models of gravity with variable G and Lambda have acquired greater relevance after the recent evidence in favour of the Einstein theory being non-perturbatively renormalizable in the Weinberg sense. The present paper builds a modified Arnowitt-Deser-Misner (ADM) action functional for such models which leads to a power-law growth of the scale factor for pure gravity and for a massless phi**4 theory in a Universe with Robertson-Walker symmetry, in agreement with the recently developed fixed-point cosmology. Interestingly, the renormalization-group flow at the fixed point is found to be compatible with a Lagrangian description of the running quantities G and Lambda.Comment: Latex file. Record without file already exists on SLAC-SPIRES, and hence that record and the one for the present arxiv submission should become one record onl

    Asteroseismic stellar activity relations

    Full text link
    In asteroseismology an important diagnostic of the evolutionary status of a star is the small frequency separation which is sensitive to the gradient of the mean molecular weight in the stellar interior. It is thus interesting to discuss the classical age-activity relations in terms of this quantity. Moreover, as the photospheric magnetic field tends to suppress the amplitudes of acoustic oscillations, it is important to quantify the importance of this effect by considering various activity indicators. We propose a new class of age-activity relations that connects the Mt. Wilson SS index and the average scatter in the light curve with the small frequency separation and the amplitude of the p-mode oscillations. We used a Bayesian inference to compute the posterior probability of various empirical laws for a sample of 19 solar-like active stars observed by the Kepler telescope. We demonstrate the presence of a clear correlation between the Mt. Wilson SS index and the relative age of the stars as indicated by the small frequency separation, as well as an anti-correlation between the SS index and the oscillation amplitudes. We argue that the average activity level of the stars shows a stronger correlation with the small frequency separation than with the absolute age that is often considered in the literature. The phenomenological laws discovered in this paper have the potential to become new important diagnostics to link stellar evolution theory with the dynamics of global magnetic fields. In particular we argue that the relation between the Mt. Wilson SS index and the oscillation amplitudes is in good agreement with the findings of direct numerical simulations of magneto-convection.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in A&

    Long time dynamics of highly concentrated solitary waves for the nonlinear Schroedinger equation

    Get PDF
    In this paper we study the behavior of solutions of a nonlinear Schroedinger equation in presence of an external potential, which is allowed to be singular at one point. We show that the solution behaves like a solitary wave for long time even if we start from a unstable solitary wave, and its dynamics coincide with that of a classical particle evolving according to a natural effective Hamiltonian

    On the spectrum of the transfer operators of a one-parameter family with intermittency transition

    Full text link
    We study the transfer operators for a family Fr:[0,1][0,1]F_r:[0,1] \to [0,1] depending on the parameter r[0,1]r\in [0,1], which interpolates between the tent map and the Farey map. In particular, considering the action of the transfer operator on a suitable Hilbert space, we can define a family of infinite matrices associated to the operators and study their spectrum by numerical methods.Comment: 6 pages, 3 figure

    A Class of Renormalization Group Invariant Scalar Field Cosmologies

    Full text link
    We present a class of scalar field cosmologies with a dynamically evolving Newton parameter GG and cosmological term Λ\Lambda. In particular, we discuss a class of solutions which are consistent with a renormalization group scaling for GG and Λ\Lambda near a fixed point. Moreover, we propose a modified action for gravity which includes the effective running of GG and Λ\Lambda near the fixed point. A proper understanding of the associated variational problem is obtained upon considering the four-dimensional gradient of the Newton parameter.Comment: 10 pages, RevTex4, no figures, to appear on GR

    Renormalization Group in Quantum Mechanics

    Get PDF
    We establish the renormalization group equation for the running action in the context of a one quantum particle system. This equation is deduced by integrating each fourier mode after the other in the path integral formalism. It is free of the well known pathologies which appear in quantum field theory due to the sharp cutoff. We show that for an arbitrary background path the usual local form of the action is not preserved by the flow. To cure this problem we consider a more general action than usual which is stable by the renormalization group flow. It allows us to obtain a new consistent renormalization group equation for the action.Comment: 20 page

    The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity

    Full text link
    We discuss various basic conceptual issues related to coarse graining flows in quantum gravity. In particular the requirement of background independence is shown to lead to renormalization group (RG) flows which are significantly different from their analogs on a rigid background spacetime. The importance of these findings for the asymptotic safety approach to Quantum Einstein Gravity (QEG) is demonstrated in a simplified setting where only the conformal factor is quantized. We identify background independence as a (the ?) key prerequisite for the existence of a non-Gaussian RG fixed point and the renormalizability of QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to appear in General Relativity and Gravitatio
    corecore