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Abstract

In this paper we study the behavior of solutions of a nonlinear Schrödinger equation in presence of an
external potential, which is allowed to be singular at one point. We show that the solution behaves like
a solitary wave for long time even if we start from a unstable solitary wave, and its dynamics coincide
with that of a classical particle evolving according to a natural effective Hamiltonian.
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1 Introduction and statement of the results

In this paper we study the long time dynamics of a solitary wave solution of a nonlinear Schrödinger
equation (NLS) in presence of an external potential. This problem has been considerably studied in the
last years, following the tradition of the work on the stability of solitons which dates back to Weinstein
[18].

The first dynamical results are given in [8] and improved, along the same lines, in [15]. This first
approach is purely variational and is based on the non-degeneracy conditions proved in [17] for the ground
state of the elliptic equation solved by the function describing the profile of a soliton. This approach has
been used also in [6], where the results of [8, 15] are extended to the case of a potential with a singularity.

A second line of investigations on our problem has been initiated in [10, 11]. In these papers the
authors have strongly used the Hamiltonian nature of NLS, approximating the solution by its symplectic
projection on the finite dimensional manifold of solitons (see (2.3), which is a sub-manifold of that used
in [10, 11], since we fix the profile U). This approach has been improved in [13, 14] for the Gross-
Pitaevskii equation by showing that it is possible to obtain an exact dynamics for the center of the
soliton approximation.

In the previous papers the non-degeneracy condition for the ground state is a fundamental assumption.
It has been removed in a more recent approach introduced in [3, 4]. The idea of these papers is that it is
possible for the solution of the NLS to remain concentrated for long time and to have a soliton behavior,
even if the profile of the initial condition is degenerate for the energy associated to the elliptic equation.
In fact the concentration of the solution follows in the semi-classical regime from the role played by the
nonlinear term, which in [3, 4] is assumed to be dependent on the Planck constant. This approach has
been used in [7] for the NLS with a Hartree nonlinearity, in which case the non-degeneracy of the ground
state is for the moment an open question.

In this paper we put together the last two approaches and try to weaken as much as possible the
assumptions on the solitary wave. First of all, one main difference is that we control only the L2 norm
of the difference between the solution of NLS and the approximating traveling solitary wave. This
has been done also in [1], and allows to drop the non-degeneracy condition and consider more general
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nonlinearities. Moreover we prove that the approximation of the solution of NLS with a traveling solitary
wave is good also if the solitary wave is not stable, that is it is not a soliton, and the profile is fixed. This
choice partly destroys the symplectic structure used in [10] and subsequent papers, but we prove that
there exists a particular projection on the manifold Mε defined in (2.3) which is almost symplectic for
long time. Actually this particular projection is natural, since it is defined in terms of the Hamiltonian
functional of NLS restricted to the manifold Mε, called the effective Hamiltonian in [14]. Then, this
almost symplectic projection is enough to prove that the approximation is good for long time. Finally,
we remark that we are able to consider the cases of regular and singular external potentials at the same
time, and slightly improve on the range of allowed behavior at the singularity with respect to [6].

In the remaining part of this section we describe the problem and the main result and discuss the
assumptions. In Section 2 we use the Hamiltonian nature of NLS to introduce the effective Hamiltonian
on the manifold Mε and to find the “natural” projection of the solution on Mε. In Sections 3 and 4 we
describe the approximation of the solution of NLS and prove the main result. Finally in the appendix
we show that our projection is almost symplectic for long time.

1.1 The problem and the assumptions

We study the behavior of solutions ψ(t, ·) ∈ H1(RN ,C), with N ≥ 3 to the initial value problem
{

iεψt + ε2△ψ − f(ε−2α|ψ|2)ψ = V (x)ψ

ψ(0, x) = εγU(ε−β(x− a0)) e
i
ε
( 1
2
(x−a0)·ξ0+θ0)

(Pε)

where ε > 0 represents the Planck constant, α, β, γ are real parameters, (a0, ξ0) ∈ R
N × R

N are the
initial conditions of the finite dimensional dynamics which the solution follows, θ ∈ R is the phase shift.
Moreover U ∈ H1(RN ) is a positive function which satisfies

−△U + f(U2)U − ωU = 0 (1.1)

for some ω ∈ R, and such that

(C1) if ρ := ∥U∥2L2 then ρ > 0;

(C2) U(x) is in L∞(RN ) and vanishes as |x| → ∞ fast enough so that
∥

∥|x|U2
∥

∥

L1 +
∥

∥|x|2U2
∥

∥

L2 + ∥|x||∇U |∥L2 < ∞

Finally we assume that f satisfies

(N1) There exists a C3 functional F : H1 → R such that d(F (|ψ|2)) = 2f(|ψ|2)ψ;

(N2) if ϕ ∈ Lr, for some r ∈ (2, 2N
N−2 ), and U is as above, then there exists C = C(ϕ, U) > 0 only

depending on ϕ and U such that
∣

∣

∣

∫

RN

[

f(|U+v|2)(U+v)−f(U2)U−(2f ′(U2)U2+f(U2))Re(v)−i f(U2)Im(v)
]

ϕ dx
∣

∣

∣
≤ C(ϕ, U) ∥v∥L2

for all v ∈ H1 with ∥v∥L2 ≤ 1.

In studying the behavior of a solution ψ(t, x) to (Pε), the potential V is considered as an external
perturbation and, when V ≡ 0 we ask the solution to the initial value problem to be a solitary wave
traveling along the unperturbed trajectory a(t) = a0 + ξ0t, ξ(t) = ξ0, namely

ψV ≡0
(t, x) = εγU(ε−β(x− a(t))) e

i
ε
( 1
2
(x−a(t))·ξ(t)+θ(t))

Using this expression for ψ in (Pε) with V ≡ 0, we obtain an identity if

−ε2−2β△U + f(ε2(γ−α)U2)U +
(

θ̇(t)−
1
4
|ξ0|

2
)

U = 0

Using (1.1) this implies that either

α = γ , β = 1 and θ(t) =
(1
4
|ξ0|

2 − ω
)

t , (1.2)

or we assume that
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(N3) f is homogeneous of degree p ∈ (0, 2
N−2 );

(N4) β = 1 + (α− γ)p

and θ(t) =
(

1
4 |ξ0|

2 − ε2−2βω
)

t.

Notice that (1.2) is a particular case of condition (N4), for which we don’t need (N3). So in the sequel
we assume (N3) and (N4) with the warning that (N3) is not necessary if the particular condition (1.2)
holds.

Finally for what concerns the potential V we consider two possible cases:

(Vr) V : RN → R is a C2 function which is bounded from below and with bounded second derivatives,
namely

hV := sup
x

(

max
i,j

∣

∣

∣

∂2V

∂xi∂xj
(x)

∣

∣

∣

)

< ∞ ;

(Vs) V is singular at x = 0 and satifisfies

(Vs1) V : RN \ {0} → R is of class C2;

(Vs2) |V (x)| ∼ |x|−ζ and |∇V (x)| ! |x|−ζ−1 as |x| → 0 for some ζ ∈ (0, 2);

(Vs3) V ∈ Lm({|x| ≥ 1}) for m > N
2 and |∇V (x)| → 0 as |x| → ∞.

1.2 The main result

In this paper we prove that

Theorem 1.1. Let U be a positive solution of (1.1) for some ω ∈ R and satisfying (C1) and (C2). Let
f satisfy (N1)-(N3) and α, β, γ ∈ R satisfy (N4) and assume that β ≥ 1, α ≥ γ ≥ 0 and, if N = 3

β < 2γ + 2, (1.3)

and no further assumption if N ≥ 4. Then, setting

δ := 1 + γ + β

(

N

2
− 2

)

,

it follows that δ > 0. Let (a(t), ξ(t),ϑ(t)) be the solution of the system

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ȧ = ξ

ξ̇ = −
2
ρ

∫

RN

∇V (a+ εβx)U2(x) dx

ϑ̇ =
1
4
|ξ(t)|2 − ε2−2β ω − V (a(t))

with initial condition (a0, ξ0, θ0), and assume that V satisfies (Vr) or (Vs). If V satisfies (Vs) we also
assume that (a0, ξ0, θ0) is such that mint |a(t)| = ā > 0.

If the solution ψ(t, x) to (Pε) exists for all t ∈ R, then we can write

ψ(t, x) = εγ U(ε−β(x− a(t))) e
i
ε
( 1
2
(x−a(t))·ξ(t)+ϑ(t) + w(t, x) e

i
ε
(ϑ(t)−θ0) (1.4)

where for any fixed η ∈ (0, δ)
∥

∥

∥
w(t, x) e

i
ε
(ϑ(t)−θ0)

∥

∥

∥

L2
= O(εη) (1.5)

for all t ∈ (0, T ) with T = O(εη−δ).

We now comment on the results of the theorem, in particular with respect to the values of the
parameters α,β, γ. The use of these parameters in (Pε) is somewhat unusual. However by obvious
rescaling in the solutions, it is possible to rewrite the results in our theorem for more familiar formulations
of NLS.

A first comment is about the role of the parameter ε. It can be interpreted as the Planck constant as
in (Pε), but it can also be used as a parameter which describes the variation of the potential V , as for
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example in [10, 11]. We notice that if ψ(t, x) is a solution to (Pε), then ψ̃(t, x) := ψ(εt, εx) is a solution
to

⎧

⎨

⎩

iψ̃t +△ψ̃ − f(ε−2α|ψ̃|2)ψ̃ = V (εx)ψ̃

ψ̃(0, x) = εγU(ε−β+1x) e
i
ε
( 1
2
x·ξ0+θ0)

(P1)

where we set a0 = 0 for simplicity. Under the same assumptions for U , F and V of Theorem 1.1, we
obtain that ψ̃(t, x) can still be written as in (1.4), but now for any fixed η ∈ (0, δ), the estimate of the
error is of the order

∥w(t, x)∥L2 = O(εη−
N
2 ) (1.6)

for all t ∈ (0, T̃ ) with T̃ = O(εη−δ−1). Hence the time of validity of the approximation has increased by
a factor ε−1, but for the estimate (1.6) to make sense we need that

δ >
N

2
⇔

⎧

⎪

⎨

⎪

⎩

β < 2γ − 1 , if N = 3;

β

(

N

2
− 2

)

+ γ >
N

2
− 1 , if N ≥ 4.

(1.7)

Notice in particular that if α is big enough, we can choose β and γ satisfying (1.3) and (1.7). So the
bigger the enhancement of the nonlinear term the better the approximation of the solution in (1.5).

Finally, it is also immediate to show that there is a relation between the effects of the rescaling in
the argument of the nonlinearity f and in the modulus of the initial condition. So we obtain results for
a standard NLS, as studied for example in [8, 15], showing the effects of a rescaled initial condition. If
ψ(t, x) is a solution to (Pε), then ε−αψ(t, x) is a solution to

{

iεψt + ε2△ψ − f(|ψ|2)ψ = V (x)ψ

ψ(0, x) = εγ−αU(ε−β(x− a0)) e
i
ε
( 1
2
(x−a0)·ξ0+θ0)

(P)

Hence under the assumptions of Theorem 1.1, for any η ∈ (0, δ) solutions of (P) can be written as in
(1.4) up to times T = O(εη−δ).

1.3 Remarks on the assumptions

We briefly discuss the assumptions on:
The solitary wave U . The positive function U is the profile of the solitary wave which is the approx-

imation of the solution of (Pε). Typically one assumes that U is not only solution of (1.1) but the
minimizer of the energy

E(u) :=

∫

RN

[1
2
|∇u|2 + F (u2)

]

dx

constrained to the manifold Σρ :=
{

u ∈ H1 : ∥u∥2L2 = ρ
}

. This is useful because the minimizer of E is
orbitally stable (see [12] and [2]), and is then called soliton. Conditions sufficient for orbital stability are
for example assumed in [10], [14] and [1]. In this paper we only assume that U is a solution of (1.1), that
is just a critical point for E constrained to Σρ, and is not necessarily orbitally stable.

For what concerns assumption (C2), we only need U ∈ L∞ for the case V singular. The speed of
vanishing at infinity is verified for example when U is a ground state, in which case U and ∇U decay
exponentially ([5, 16]).

The nonlinearity f . We first discuss (N2). This assumption is used also in [1] to which we refer for
the proof that (N2) is satisfied if:

• f is a Hartree nonlinearity
f(|ψ|2)ψ = (W (x) ⋆ |ψ|2)ψ

with W positive, spherically symmetric, in Lq +L∞ with q > max
{

N
2 , 2

}

, and decaying at infinity;

• f is a local nonlinearity, that is we can write f : R+ → R with f(s) = F ′(s) for a C3 function
F : R+ → R, and

sup
s∈R+

s
2k−1

2 f (k)(s) < ∞ , k = 1, 2
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Assumption (N3) is satisfied by the Hartree nonlinearities as above with p = 1 and for and by power
local nonlinearities f(s) = sp. However we remark that (N3) is not needed if we assume (1.2).

The potential V . The assumptions (Vr) and (Vs) on the potential are needed to have local well-
posedness for (Pε) by results in [9, Chapter 4]. In particular, concerning (Vs2), local well-posedness is
implied by ζ < 2 for all N . It also implies the finiteness of the Hamiltonian (2.1) and the vector field in
(2.7) for which ζ < N − 1 is sufficient. Notice that in [6] it was assumed ζ < 1.

2 Hamiltonian formulation for NLS and the trajectories of

the solitary waves

Following [10], we consider the space H1(RN ,C) equipped with the symplectic form

ω(ψ,φ) := Im

∫

RN

ψ φ̄ dx

and problem (Pε) associated to the Hamiltonian functional

H(ψ) :=
1
2

∫

RN

[

ε2|∇ψ|2 + V (x)|ψ|2 + ε2αF (ε−2α|ψ|2)
]

dx (2.1)

via the law εψt = XH, where XH is the vector field satisfying

ω(φ,XH) = dH[φ] ∀φ .

Since the Hamiltonian H is not dependent on time, a solution to (Pε) satisfies H(ψ(t, x)) = H(ψ(0, x))
for all t. Moreover the Hamiltonian H is invariant under the global gauge transformation ψ /→ eiθψ for
all θ ∈ R. This implies that there exists another conserved quantity for the Hamiltonian flow of H, and
it is given by the charge

C(ψ) :=

∫

RN

|ψ|2 dx .

Hence, by assumption (C1), it follows that a solution to (Pε) satisfies

∥ψ(t, x)∥2L2 = ε2γ+βN ∥U∥2L2 = ε2γ+βNρ ∀ t . (2.2)

When V ≡ 0, we have seen that the solution belongs to the manifold

Mε :=
{

Uσ(x) := εγU(ε−β(x− a))e
i
ε
( 1
2
(x−a)·ξ+θ)

/

σ := (a, ξ, θ) ∈ R
N × R

N × R

}

(2.3)

Following [14], we construct an Hamiltonian flow associated to H on the manifold Mε. To this aim we
first have to compute Ωσ, the restriction of the symplectic form ω on Mε. The tangent space TUσ

Mε to
Mε in a point Uσ is generated by

zεj,σ(x) :=
∂Uσ(x)
∂aj

= −
(

εγ−β∂jU(ε−β(x− a)) + i
εγ−1

2
ξjU(ε−β(x− a))

)

e
i
ε
( 1
2
(x−a)·ξ+θ), j = 1, . . . , N

(2.4)

zεj,σ(x) :=
∂Uσ(x)
∂ξj

= i
1
2ε

xj−N Uσ(x) , j = N + 1, . . . , 2N (2.5)

zε2N+1,σ(x) :=
∂Uσ(x)
∂θ

= i
1
2ε

Uσ(x) (2.6)

Hence

Ωσ := ω(zεi,σ, z
ε
j,σ)1≤i,j≤2N+1

=
1
4
ε2γ+βN−1ρ

⎛

⎝

0N×N −IN×N 0
1×N

IN×N 0N×N 0
1×N

0N×1
0N×1

0

⎞

⎠ =
1
4
ε2γ+βN−1ρ dξ ∧ da

The form Ωσ is degenerate and so Mε is not a symplectic manifold. This is in contrast to [10] and [14]
where the soliton manifold was defined also varying the parameter ω in (1.1). Anyway we use Ωσ to
obtain a dynamical system for σ = (a, ξ, θ) associated to the effective Hamiltonian

HM(a, ξ, θ) := H(Uσ) =
1
8
ε2γ+βNρ|ξ|2 +

1
2
ε2γ+βN

∫

RN

V (a+ εβx)U2(x) dx+ const(U) .

5



It follows that

εσ̇ =
4
ρ
ε−(2γ+βN−1)

⎛

⎝

∂ξHM

−∂aHM

0

⎞

⎠

hence the system of differential equations
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ȧ = ξ

ξ̇ = −
2
ρ

∫

RN

∇V (a+ εβx)U2(x) dx

θ̇ = 0

(2.7)

For a solution σ(t) = (a(t), ξ(t), θ(t)) of (2.7) we introduce the following notation which is needed below:

v(t) :=
1
ρ

∫

RN

(

∇V (a(t) + εβx)−∇V (a(t))
)

U2(x) dx (2.8)

3 Approximation of the solution

In [10] and related papers, the main idea was to prove the existence of a unique symplectic decomposition
for the solution of (Pε) up to a given time τ . This was achieved by proving that the solution stays for
t ≤ τ in a small tubular neighbourhood of the symplectic manifold Mε, and using the existence of a
symplectic projection on Mε. In this paper instead we define a particular projection of the solution on
the manifold Mε, projection which turns out to be “almost” symplectic up to some time τ , and show
that difference between the solution and the projection is small for t ≤ τ .

Let ψ(t, x) be the solution of (Pε) and assume that it is defined for all t ∈ R. Let σ(t) = (a(t), ξ(t), θ(t))
be the solution of (2.7) with initial conditions σ0 = (a0, ξ0, θ0), and Uσ(t) the element in Mε associated
to σ(t). Moreover, let ωε(t) be a solution of the Cauchy problem

⎧

⎨

⎩

ω̇ε(t) = ε2−2βω −
1
4
|ξ(t)|2 + V (a(t))

ωε(0) = 0
(3.1)

Notice that in the statement of Theorem 1.1 we use the notation ϑ(t) = θ(t)− ωε(t).
Then we define

w(t, x) := e
i
ε
ωε(t) ψ(t, x)− Uσ(t)(x) . (3.2)

and using x̃ = ε−β(x− a(t))

w̃(t, x̃) :=ε−γe−
i
ε
( 1
2
εβ x̃·ξ(t)+θ(t)) w(t, a(t) + εβ x̃)

=ε−γe−
i
ε
( 1
2
εβ x̃·ξ(t)+θ(t)−ωε(t)) ψ(t, a(t) + εβx̃)− U(x̃)

(3.3)

The functions w(t, x) and w̃(t, x̃) represent the distance between the solution and the solitary wave,
solution with V ≡ 0, in the moving and in the fixed space-time frame respectively. Recall from (2.4)-
(2.6) that the tangent space to the soliton manifold Mε with ε = 1 at σ = 0 is generated by

zj,0(x) = −∂jU(x) , j = 1, . . . , N (3.4)

zj,0(x) = i
1
2
xj−NU(x) , j = N + 1, . . . , 2N (3.5)

z2N+1,0(x) = iU(x) . (3.6)

Then

Lemma 3.1. For all t ∈ R and all σ = (a, ξ, θ) ∈ R
2N+1, we have

ω(w, zεj,σ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ε2γ+β(N−1) ω(w̃, zj,0)−
1
2
ε2γ+βN−1 ξj(t)ω(w̃, z2N+1,0) , j = 1, . . . , N

ε2γ+β(N+1)−1 ω(w̃, zj,0) +
1
2
ε2γ+βN−1 aj−N (t)ω(w̃, z2N+1,0) , j = N + 1, . . . , 2N

ε2γ+βN−1 ω(w̃, zj,0) , j = 2N + 1
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Proof. First of all, by standard manipulations, for all j = 1, . . . , 2N + 1

ω(w(t, x), zεj,σ(x)) = Im

∫

RN

w(t, x) zεj,σ(t, x) dx = εβNIm

∫

RN

w(t, a(t) + εβx̃) zεj,σ(t, a(t) + εβx̃) dx̃ =

= εβN Im

∫

RN

e−
i
ε
( 1
2
εβ x̃·ξ(t)+θ(t))w(t, a(t) + εβx̃) e−

i
ε
( 1
2
εβ x̃·ξ(t)+θ(t))zεj,σ(t, a(t) + εβx̃) dx̃ =

= εγ+βN ω
(

w̃(t, x̃), e−
i
ε
( 1
2
εβ x̃·ξ(t)+θ(t))zεj,σ(t, a(t) + εβ x̃)

)

,

where in the last equality we have used (3.3). Moreover, using (2.4)-(2.6) and (3.4)-(3.6), we have

e−
i
ε
( 1
2
εβ x̃·ξ(t)+θ(t))zεj,σ(t, a(t)+ε

βx̃) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

εγ−βzj,0(x̃)−
1
2
εγ−1 ξj(t)z2N+1,0(x̃) , j = 1, . . . , N

εγ+β−1zj,0(x̃) +
1
2
εγ−1 aj−N (t)z2N+1,0(x̃) , j = N + 1, . . . , 2N

εγ−1 zj,0(x̃) , j = 2N + 1

and the proof is finished.

We first study the evolution in time of the function w̃(t, x̃).

Proposition 3.2. Let w̃(t, x̃) be defined as in (3.3) for all t ∈ R, then

∂tw̃(t, x̃) =
i

ε

(

εβx̃ · v(t)−RV (t, x̃)
)(

U(x̃) + w̃(t, x̃)
)

+

+ iε1−2β
[

△w̃(t, x̃) + ω w̃(t, x̃)−
(

2f ′(U2(x̃))U2(x̃) + f(U2(x̃))
)

Re(w̃(t, x̃))+

− i f(U2(x̃))Im(w̃(t, x̃))−RF (t, x̃)
]

where v(t) is defined in (2.8) and

RV (t, x̃) := V (a(t) + εβx̃)− V (a(t))− εβx̃ ·∇V (a(t))

RF (t, x̃) := f(|U(x̃) + w̃(t, x̃)|2)
(

U(x̃) + w̃(t, x̃)
)

− f(U2(x̃))U(x̃)+

−
(

2f ′(U2(x̃))U2(x̃) + f(U2(x̃))
)

Re(w̃(t, x̃))− i f(U2(x̃))Im(w̃(t, x̃))

Proof. From (3.3), we have

ψ(t, x) = εγ e
i
ε
( 1
2
(x−a(t))·ξ(t)+θ(t)−ωε(t))

(

U(ε−β(x− a(t))) + w̃(t, ε−β(x− a(t)))
)

hence, using the notation

g(t, x) := e
i
ε
( 1
2
(x−a(t))·ξ(t)+θ(t)−ωε(t))

we have

∂tψ(t, x) =
i

ε

(

−
1
2
ȧ(t) · ξ(t) +

1
2
(x− a(t)) · ξ̇(t) + θ̇(t)− ω̇ε(t)

)

ψ(t, x)+

+ εγ g(t, x)
[

∂tw̃(t, ε−β(x− a(t)))− ε−β ȧ(t) ·
(

∇U(ε−β(x− a(t))) +∇w̃(t, ε−β(x− a(t)))
)]

Hence

∂tw̃(t, ε−β(x− a(t))) =ε−γg−1(t, x)∂tψ(t, x) + ε−β ȧ(t) ·
(

∇U(ε−β(x− a(t))) +∇w̃(t, ε−β(x− a(t)))
)

+

+
i

ε

(1
2
ȧ(t) · ξ(t)−

1
2
(x− a(t)) · ξ̇(t)− θ̇(t) + ω̇ε(t)

)

ε−γg−1(t, x)ψ(t, x)
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At this point we use that ψ(t, x) is a solution of (Pε) and change variable x̃ = ε−β(x− a(t)), to obtain

∂tw̃(t, x̃) =−
i

ε

(

V (a(t) + εβx̃) + f(ε2γ−2α|U(x̃) + w̃(t, x̃)|2)
)(

U(x̃) + w̃(t, x̃)
)

+

+ iε1−2β
(

△U(x̃) +△w̃(t, x̃)
)

−
i

4
ε−1|ξ(t)|2

(

U(x̃) + w̃(t, x̃)
)

+

+ ε−β ȧ(t) ·
(

∇U(x̃) +∇w̃(t, x̃)
)

− ε−βξ(t) ·
(

∇U(x̃) +∇w̃(t, x̃)
)

+

+
i

ε

(1
2
ȧ(t) · ξ(t)−

1
2
εβx̃ · ξ̇(t)− θ̇(t) + ω̇ε(t)

)(

U(x̃) + w̃(t, x̃)
)

We now use that σ(t) = (a(t), ξ(t), θ(t)) is a solution of (2.7) and ωε(t) satisfies (3.1) to see that

1
2
ȧ(t) · ξ(t)− θ̇(t) + ω̇ε(t)−

1
4
|ξ(t)|2 = ε2−2β ω + V (a(t))

Moreover using that U solves (1.1) we have

∂tw̃(t, x̃) =
i

ε

(1
ρ
εβ x̃ ·

∫

RN

∇V (a(t) + εβy)U2(y) dy + V (a(t))− V (a(t) + εβx̃)
)(

U(x̃) + w̃(t, x̃)
)

+

+
i

ε

(

ε2−2βf(U2(x̃))U(x̃)− f(ε2γ−2α|U(x̃) + w̃(t, x̃)|2)
(

U(x̃) + w̃(t, x̃)
))

+

+ iε1−2β
(

△w̃(t, x̃) + ω w̃(t, x̃)
)

Finally, in the first line we use

1
ρ
εβx̃ ·

∫

RN

∇V (a(t) + εβy)U2(y) dy + V (a(t))− V (a(t) + εβx̃) = εβx̃ · v(t)−RV (t, x̃)

Then in the second line we write

f(ε2γ−2α|U(x̃) + w̃(t, x̃)|2)
(

U(x̃) + w̃(t, x̃)
)

= f(ε2γ−2αU2(x̃))U(x̃)+

+
[

2ε2γ−2αf ′(ε2γ−2αU2(x̃))U2(x̃) + f(ε2γ−2αU2(x̃))
]

Re(w̃(t, x̃)) + i f(ε2γ−2αU2(x̃))Im(w̃(t, x̃))+

+ rF (t, x̃)

where rF (t, x̃) is defined by this equality. Using now assumption (N3) we have

f(ε2γ−2αU2(x̃))U(x̃) = ε2(γ−α)p f(U2(x̃))U(x̃)

ε2γ−2αf ′(ε2γ−2αU2(x̃)) = ε2(γ−α)p f ′(U2(x̃))

and by assumption (N4) 2− 2β = 2(γ − α)p. Hence

ε2−2βf(U2(x̃))U(x̃)− f(ε2γ−2α|U(x̃) + w̃(t, x̃)|2)
(

U(x̃) + w̃(t, x̃)
)

=

= −ε2−2β
[(

2f ′(U2(x̃))U2(x̃) + f(U2(x̃))
)

Re(w̃(t, x̃)) + i f(U2(x̃))Im(w̃(t, x̃)) +RF (t, x̃)
]

and the proof is finished.

We now use Lemma 3.1 and Proposition 3.2 to estimate the growth of the function w(t, x) in L2

norm.

Theorem 3.3. Let ψ(t, x) be the solution of (Pε) assumed to be defined for all t ∈ R. Let σ(t) =
(a(t), ξ(t), θ(t)) be the solution of (2.7) with initial conditions σ0 = (a0, ξ0, θ0), and Uσ(t) the element
in Mε associated to σ(t). Finally let ωε(t) be the solution of the Cauchy problem (3.1). If the function
w(t, x) defined in (3.2) satisfies ∥w(t, ·)∥L2 ≤ 1 for t ∈ (0, τ ) then

∣

∣

∣
∂t ∥w(t, ·)∥2L2

∣

∣

∣
≤ 4 εγ+β N

2 ∥w(t, ·)∥L2

(1
2
εβ−1 ∥|x|U(x)∥L2 |v(t)|+ε−1 ∥|RV (t, x)|U(x)∥L2+ε

1−2β C(zj,0, U)
)

(3.7)
for all t ∈ (0, τ ), where v(t) is defined in (2.8), RV (t, x) is as in Proposition 3.2, and C(zj,0, U) is defined
in (N2).
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Proof. From (3.2) we write

∥

∥

∥
e

i
ε
ωε(t)ψ(t, ·)

∥

∥

∥

2

L2
= ∥w(t, ·)∥2L2 +

∥

∥Uσ(t)(·)
∥

∥

2

L2 + 2Re

∫

RN

w(t, x)Uσ(t)(x) dx .

Moreover using (2.6)

Re

∫

RN

w(t, x)Uσ(t)(x) dx = −Im

∫

RN

w(t, x) i Uσ(t)(x) dx = −2εω(w, zε2N+1,σ)

and using (2.2)
∥

∥

∥
e

i
ε
ωε(t)ψ(t, ·)

∥

∥

∥

2

L2
=

∥

∥Uσ(t)(·)
∥

∥

2

L2 = ε2γ+βN ρ , ∀ t .

Hence
∂t ∥w(t, ·)∥2L2 = 4ε ∂t

(

ω(w, zε2N+1,σ)
)

We now use Lemma 3.1 for j = 2N + 1 to write

∂t ∥w(t, ·)∥2L2 = 4ε2γ+βN ∂t
(

ω(w̃, z2N+1,0)
)

= 4ε2γ+βN ω(∂tw̃, z2N+1,0) (3.8)

The final step is to use the results in Appendix A. In particular, notations (A.1)-(A.4) and Lemmas
A.1-A.4, imply

ω(∂tw̃, z2N+1,0) = ω(I2, z2N+1,0) + ω(I4, z2N+1,0)

and
∣

∣

∣ω(∂tw̃, z2N+1,0)
∣

∣

∣ ≤ ∥w̃∥L2

(1
2
εβ−1 ∥|x̃|U(x̃)∥L2 |v(t)|+ ε−1 ∥|RV (t, x̃)|U(x̃)∥L2 + ε1−2β C(zj,0, U)

)

This, together with (3.8) and

∥w̃∥L2 = ε−γ−β N
2 ∥w∥L2

which follows from (3.3), imply (3.7).

4 Proof of Theorem 1.1

We first study the behavior of v(t) and RV (t, x) as defined in (2.8) and Proposition 3.2. Notice that
they are defined only in terms of U and V , and do not depend on the solution ψ(t, x) of (Pε).

Let first consider the case of potentials V satisfying assumptions (Vr). By (C2) it is immediate that
system (2.7) can be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ȧ = ξ

ξ̇ = −2∇V (a) +O(εβ)

θ̇ = 0

and for all t ∈ R

|v(t)| ≤ εβ N
hV

ρ

∫

RN

|x|U2(x) dx (4.1)

|RV (t, x)| ≤ ε2β
N2

2
hV |x|2 (4.2)

Let now V satisfy assumptions (Vs), then by (Vs2) and (Vs3) it follows that if the solution of (2.7)
satisfies a(t) ≠ 0 for all t ∈ R, then

∣

∣

∣

∫

RN

V (a(t) + εβx)U2(x) dx
∣

∣

∣
< ∞ (4.3)

|v(t)| ≤ |∇V (a(t))|+
∣

∣

∣

∫

RN

∇V (a(t) + εβx)U2(x) dx
∣

∣

∣
< ∞ (4.4)

∥ |RV (t, x)|ϕ(x)∥L2 ≤ const(ζ,ϕ) (4.5)
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for all t ∈ R and for ϕ(x) = U(x), |x|U(x), U(x)|∇U(x)|.
Let ψ(t, x) be the solution of (Pε). Let σ(t) = (a(t), ξ(t), θ(t)) be the solution of (2.7) with initial

conditions σ0 = (a0, ξ0, θ0) such that a(t) ≠ 0 for all t ∈ R if V is singular at the origin, and Uσ(t) the
element in Mε associated to σ(t). Finally let ωε(t) be the solution of the Cauchy problem (3.1). Then
the function w(t, x) defined in (3.2) satisfies

∥w(0, x)∥L2 = 0

Hence (3.7) holds for t ∈ (0, τ ) with τ small enough.
Moreover from (4.1)-(4.2) and (4.4)-(4.5) follow that in both cases for V , there exists a constant

C(U, a0, ξ0, ζ) not depending on t, such that from (3.7) we get
∣

∣

∣
∂t ∥w(t, ·)∥L2

∣

∣

∣
≤ C(U, a0, ξ0, ζ) ε

γ+β N
2

(

εβ−1 + ε−1 + ε1−2β
)

, ∀ t ∈ (0, τ )

Since β ≥ 1, it follows
∣

∣

∣
∂t ∥w(t, ·)∥L2

∣

∣

∣
≤ C(U, a0, ξ0, ζ) ε

1+γ+β(N
2
−2) , ∀ t ∈ (0, τ ) (4.6)

First of all, by (N4) we can write

δ := 1 + γ + β

(

N

2
− 2

)

=
N

2
− 1 + γ + (α− γ) p

(

N

2
− 2

)

and δ > 0 if N ≥ 4. If N = 3 instead we also need to assume

α− γ <
2
p

(

γ +
1
2

)

to have δ > 0. However, in both cases we get τ = O(ε−δ), hence our argument is consistent.
Moreover, for any fixed η ∈ (0, δ), estimates (4.6) immediately implies

∥w(t, ·)∥L2 = O(εη)

for all t ∈ (0, T ) with T = O(εη−δ). The proof is complete.
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A The approximation of the symplectic projection

We have approximated the solution ψ(t, x) of (Pε) by a projection on the manifold Mε of solitons. As
stated above, the manifold Mε is not symplectic and the projection Uσ(t) is not obtained by a symplectic
decomposition as in [10] and subsequent papers. However we now show that the difference

w(t, x) = e
i
ε
ωε(t)ψ(t, x)− Uσ(t)(t, x)

is almost symplectic orthogonal to Mε for long time. In particular we show that the quantities ω(w, zεj,σ)
increase slowly.

By Lemma 3.1, we only need to compute the derivatives

∂tω(w̃, zj,0) = ω(∂tw̃, zj,0)

and use (2.7). We use Proposition 3.2 and write

∂tw̃ = I1 + I2 + I3 + I4
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where

I1 :=
i

ε

(

εβx̃ · v(t)−RV (t, x̃)
)

U(x̃) (A.1)

I2 :=
i

ε

(

εβx̃ · v(t)−RV (t, x̃)
)

w̃(t, x̃) (A.2)

I3 :=
iε1−2β

[

△w̃(t, x̃) + ω w̃(t, x̃)−
(

2f ′(U2(x̃))U2(x̃) + f(U2(x̃))
)

Re(w̃(t, x̃))+

− i f(U2(x̃))Im(w̃(t, x̃))
] (A.3)

I4 := −iε1−2βRF (t, x̃) (A.4)

Lemma A.1. Recalling notation (2.8), we have

ω(I1, zj,0) =

⎧

⎨

⎩

1
2
εβ−1ρvj(t) +

1
2ε

∫

RN

RV (t, x̃) ∂j(U
2)(x̃) dx̃ , j = 1, . . . , N

0 , j = N + 1, . . . , 2N + 1

Proof. For j = 1, . . . , N , using (3.4) and (C2),

ω(I1, zj,0) =Im

∫

RN

i

ε

(

εβ x̃ · v(t)−RV (t, x̃)
)

U(x̃) (−∂jU(x̃)) dx̃ =

=−
1
2
εβ−1

∫

RN

x̃ · v(t) ∂j(U
2)(x̃) dx̃+

1
2ε

∫

RN

RV (t, x̃) ∂j(U
2)(x̃) dx̃ =

=
1
2
εβ−1

∫

RN

U2(x̃) ∂j(x̃ · v(t)) dx̃+
1
2ε

∫

RN

RV (t, x̃) ∂j(U
2)(x̃) dx̃ =

=
1
2
εβ−1ρvj(t) +

1
2ε

∫

RN

RV (t, x̃) ∂j(U
2)(x̃) dx̃

For j = N + 1, . . . , 2N , using (3.5),

ω(I1, zj,0) =Im

∫

RN

i

ε

(

εβx̃ · v(t)−RV (t, x̃)
)

U(x̃)
(

i
1
2
xj−NU(x̃)

)

dx̃ = 0

For j = 2N + 1, using (3.6),

ω(I1, zj,0) =Im

∫

RN

i

ε

(

εβx̃ · v(t)−RV (t, x̃)
)

U(x̃)
(

iU(x̃)
)

dx̃ = 0

and the proof is finished.

Lemma A.2. Recalling notation (2.8), we have

|ω(I2, zj,0)| ≤

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∥w̃∥L2

(

εβ−1 ∥|x̃| |∇U(x̃)|∥L2 |v(t)|+ ε−1 ∥RV (t, ·) |∇U |∥L2

)

, j = 1, . . . , N

∥w̃∥L2

(1
2
εβ−1

∥

∥|x̃|2U(x̃)
∥

∥

L2 |v(t)|+ ε−1 ∥RV (t, x̃) |x̃|U(x̃)∥L2

)

, j = N + 1, . . . , 2N

∥w̃∥L2

(1
2
εβ−1 ∥|x̃|U(x̃)∥L2 |v(t)|+ ε−1 ∥RV (t, ·)U∥L2

)

, j = 2N + 1

Proof. For j = 1, . . . , N , using (3.4),

|ω(I2, zj,0)| =
∣

∣

∣Im

∫

RN

i

ε

(

εβx̃ · v(t)−RV (t, x̃)
)

w̃(t, x̃) (−∂jU(x̃)) dx̃
∣

∣

∣ ≤

≤εβ−1
∫

RN

|x̃ · v(t)| |w̃(t, x̃)| |∂jU(x̃)| dx̃+ ε−1
∫

RN

|RV (t, x̃)| |w̃(t, x̃)| |∂jU(x̃)| dx̃

and then use |x̃ · v(t)| ≤ |x̃||v(t)| and Cauchy-Schwarz inequality.
The cases j = N + 1, . . . , 2N + 1 are proved in the same way.

11



Lemma A.3.

ω(I3, zj,0) =

⎧

⎪

⎨

⎪

⎩

0 , j = 1, . . . , N

ε1−2β ω(w̃, zj−N,0) , j = N + 1, . . . , 2N

0 , j = 2N + 1

Proof. Notice that
I3 = iε1−2β L(w̃)

where L is the Hessian of the energy associated to (1.1). Then

ω(I3, zj,0) = −ε1−2βIm

∫

RN

w̃(t, x̃) iL(zj,0) dx̃

and we conclude using Lemma 2 in [1].

Lemma A.4. If ∥w̃(t, ·)∥L2 ≤ 1 then

|ω(I4, zj,0)| ≤ ε1−2β C(zj,0, U) ∥w̃∥L2

for all j = 1, . . . , 2N + 1.

Proof. It follows immediately from (N2) and (C2).

We can now prove

Proposition A.5. Under the same assumptions of Theorem 1.1, it holds

max
j=1,...,2N+1

∣

∣

∣
∂t ω(w, zεj,σ)

∣

∣

∣
= O(εδ−1)

for all t ∈ (0, τ ) with τ = O(ε−δ).

Proof. From Lemma 3.1, we have for j = 1, . . . , N

∂t ω(w, zεj,σ) = ε2γ+β(N−1) ω(∂tw̃, zj,0)−
1
2
ε2γ+βN−1 ξj(t)ω(∂tw̃, z2N+1,0)−

1
2
ε2γ+βN−1 ξ̇j(t)ω(w̃, z2N+1,0)

and for j = N + 1, . . . , 2N

∂t ω(w, zεj,σ) = ε2γ+β(N+1)−1 ω(∂tw̃, zj,0) +
1
2
ε2γ+βN−1 aj−N (t)ω(∂tw̃, z2N+1,0)+

+
1
2
ε2γ+βN−1 ȧj−N(t)ω(w̃, z2N+1,0)

Hence using Lemmas A.1-A.4, we have the following estimates: for j = 1, . . . , N

∣

∣

∣∂t ω(w, zεj,σ)
∣

∣

∣ ≤
1
2
ε2γ+βN−1 ρ|v(t)|+ ε2γ+β(N−1)−1 ∥RV (t, ·)U∥L2 ∥∇U∥L2 +

+ ∥w̃∥L2

(

ε2γ+βN−1 ∥|x| |∇U(x)|∥L2 |v(t)|+ ε2γ+β(N−1)−1 ∥RV (t, ·) |∇U |∥L2

)

+

+ ε2γ+β(N−3)+1 C(zj,0, U) ∥w̃∥L2 +
1
2
ε2γ+β(N−2) |ξ(t)|C(z2N+1,0, U) ∥w̃∥L2 +

+
1
2
|ξ(t)| ∥w̃∥L2

(1
2
ε2γ+β(N+1)−2 ∥|x|U(x)∥L2 |v(t)|+ ε2γ+βN−2 ∥RV (t, ·)U∥L2

)

+

+
1
2
ε2γ+βN−1 ρ

1
2 |ξ̇(t)| ∥w̃∥L2
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for j = N + 1, . . . , 2N

∣

∣

∣
∂t ω(w, zεj,σ)

∣

∣

∣
≤ ∥w̃∥L2

(1
2
ε2γ+β(N+2)−2

∥

∥|x|2U(x)
∥

∥

L2 |v(t)|+ ε2γ+β(N+1)−2 ∥RV (t, x) |x|U(x)∥L2

)

+

+ ε2γ+β(N−1) ∥|x|U(x)∥L2 ∥w̃∥L2 + ε2γ+β(N−1) C(zj,0, U) ∥w̃∥L2 +

+
1
2
|a(t)| ∥w̃∥L2

(1
2
ε2γ+β(N+1)−2 ∥|x|U(x)∥L2 |v(t)|+ ε2γ+βN−2 ∥RV (t, ·)U∥L2

)

+

+
1
2
ε2γ+β(N−2) |a(t)|C(z2N+1,0, U) ∥w̃∥L2 +

1
2
ε2γ+βN−1 ρ

1
2 |ȧ(t)| ∥w̃∥L2

Moreover we have from the proof of Theorem 3.3 that

∣

∣

∣
∂t ω(w, zε2N+1,σ)

∣

∣

∣
≤ ∥w̃∥L2

(1
2
ε2γ+β(N+1)−1 ∥|x|U(x)∥L2 |v(t)|+ ε2γ+βN−2 ∥|RV (t, ·)|U∥L2 +

+ ε2γ+β(N−2) C(zj,0, U)
)

Arguing now as in the proof of Theorem 1.1, and using

∥w̃∥L2 = ε−γ−β N
2 ∥w∥L2

we have for β ≥ 1

max
j=1,...,2N+1

∣

∣

∣∂t ω(w, zεj,σ)
∣

∣

∣ ≤ C(U, a0, ξ0, V )
(

ε2γ+β(N−1)−1 + ∥w∥L2 ε
γ+β(N

2
−2)

)

By (4.6), this implies that

max
j=1,...,2N+1

∣

∣

∣
∂t ω(w, zεj,σ)

∣

∣

∣
≤ C(U, a0, ξ0, V ) εγ+β(N

2
−2)

for all t ∈ (0, τ ) with τ = O(ε−δ).
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