4 research outputs found

    Role of ventral medullary catecholaminergic neurons for respiratory modulation of sympathetic outflow in rats

    Get PDF
    Abstract Sympathetic activity displays rhythmic oscillations generated by brainstem inspiratory and expiratory neurons. Amplification of these rhythmic respiratory-related oscillations is observed in rats under enhanced central respiratory drive or during development of neurogenic hypertension. Herein, we evaluated the involvement of ventral medullary sympatho-excitatory catecholaminergic C1 neurons, using inhibitory Drosophila allatostatin receptors, for the enhanced expiratory-related oscillations in sympathetic activity in rats submitted to chronic intermittent hypoxia (CIH) and following activation of both peripheral (hypoxia) and central chemoreceptors (hypercapnia). Pharmacogenetic inhibition of C1 neurons bilaterally resulted in reductions of their firing frequency and amplitude of inspiratory-related sympathetic activity in rats in normocapnia, hypercapnia or after CIH. In contrast, hypercapnia or hypoxia-induced enhanced expiratory-related sympathetic oscillations were unaffected by C1 neuronal inhibition. Inhibition of C1 neurons also resulted in a significant fall in arterial pressure and heart rate that was similar in magnitude between normotensive and CIH hypertensive rats, but basal arterial pressure in CIH rats remained higher compared to controls. C1 neurons play a key role in regulating inspiratory modulation of sympathetic activity and arterial pressure in both normotensive and CIH hypertensive rats, but they are not involved in the enhanced late-expiratory-related sympathetic activity triggered by activation of peripheral or central chemoreceptors

    Activation of GABA receptors in the NTS of awake rats reduces the gain of baroreflex bradycardia

    No full text
    International audienceIn the present study we evaluated the effects of bilateral microinjection of muscimol (a GABA(A) receptor agonist) and baclofen (a GABA(B) receptor agonist) into the lateral commissural nucleus tractus solitarii (NTS) of awake rats on the gain of the baroreflex (BG) activated by a short duration (10-15 s) infusion of phenylephrine (Phe, 2.5 microg/0.05 ml, i.v.). Microinjection of muscimol (50 pmol/50 nl, n=8) into the NTS produced a significant increase in baseline mean arterial pressure ((MAP) 122+/-6 vs. 101+/-2 mmHg), no changes in baseline heart rate (HR) and a reduction in BG (-1.59+/-0. 1 vs. -0.69+/-0.1 beats/mmHg). Microinjection of baclofen (6.25 pmol/50 nl, n=6) into the NTS also produced a significant increase in baseline MAP (138+/-5 vs. 103+/-2 mmHg), no changes in baseline HR and a reduction in BG (-1.54+/-0.3 vs. -0.53+/-0.2 beats/mmHg). Considering that the reduction in BG could be secondary to the increase in MAP in response to microinjection of muscimol (n=6) or baclofen (n=7) into the NTS, in these two groups of rats we brought the MAP back to baseline by infusion of sodium nitroprusside (NP, 3.0 microg/0.05 ml, i.v.). Under these conditions, we verified that the BG remained significantly reduced after muscimol (-1.49+/-0.2 vs. -0.35+/-0.2 beats/mmHg) and after baclofen (-1.72+/-0.2 vs. -0.33+/-0.2 beats/mmHg) when compared to control. Reflex tachycardia was observed during the normalization of MAP by NP infusion and, in order to prevent the autonomic imbalance from affecting BG, we used another group of rats treated with atenolol (5 mg/kg, i.v.), a beta1 receptor antagonist. In rats previously treated with atenolol and submitted to NP infusion, we verified that BG remained reduced after microinjection of muscimol or baclofen into the NTS. The data show that activation of GABA(A) and GABA(B) receptors, independently of the changes in the baseline MAP or HR, inhibited the neurons of the NTS involved in the parasympathetic component of the baroreflex

    Pressor Response to Microinjection of Orexin/Hypocretin Into Rostral Ventrolateral Medulla of Awake Rats

    No full text
    Orexin A (or hypocretin 1)-immunoreactive neurons in the rat lateral hypothalamus project to several areas of the medulla oblongata that are closely associated with cardiovascular regulation. The present study was undertaken to further strengthen the hypothesis that orexin A accelerates cardiovascular response by activating sympathoexcitatory neurons in the rat rostral ventrolateral medulla (RVLM). First, immunohistochemical studies revealed the presence of orexin A-immunoreactive fibers in the RVLM. Double labeling the sections with orexin A- and tyrosine hydroxylase (TH)-antisera further showed that orexin A-immunoreactive fibers are in close proximity with TH-immunoreactive neurons, some of which may be barosensitive, bulbospinal neurons in the RVLM. Second, microinjection of orexin A (6.35, 12.7 and 38.1 μM) into the RVLM, which was verified later by histological examination, caused a significant increase of mean arterial pressure (MAP) and a moderate increase of heart rate (HR) in awake rats. L-glutamate (33.3 mM) injected into the same sites, caused a larger increase in MAP, but a decrease in HR; whereas, saline injection was without significant effect. Results from this study suggest that orexin A, which may be released from the nerve fibers originating from the neurons in the lateral hypothalamus, acting on RVLM neurons in the medulla, increases sympathetic outflow targeted to the heart and blood vessels in awake animals

    Microinjection of a 5-HT3 receptor agonist into the NTS of awake rats inhibits the bradycardic response to activation of the von Bezold-Jarisch reflex

    No full text
    International audienceIn the present study we investigated the effects of bilateral microinjection into the lateral commissural nucleus tractus solitarius (NTS) of 2-methyl-5-HT, a 5-HT3 receptor agonist, on the bradycardic response of the von Bezold-Jarisch reflex of awake rats. We evaluated mainly the bradycardic response because in previous studies we documented that the hypotensive response of the von-Bezold-Jarisch reflex in awake rats is secondary to the intense bradycardic response. The Bezold-Jarisch reflex was activated by intravenous injection of serotonin (8 microg/kg) in awake rats before and 1, 3, 10, 20 and 60 min after bilateral microinjection of 2-methyl-5-HT (5 nmol/50 nl, n = 8) into the NTS. Microinjections of 2-methyl-5-HT into the NTS produced a significant increase in basal mean arterial pressure [(MAP), 97 +/- 4 vs. 114 +/- 4 mmHg), no changes in basal heart rate and a significant reduction in bradycardic (-78 +/- 19; -94 +/- 24 and -107 +/- 21 bpm) and hypotensive (-16 +/- 4; -10 +/- 5 and -17 +/- 4 mmHg) responses to activation of the von Bezold-Jarisch reflex at 3, 10 and 20 min, respectively, when compared with the control value (-231 +/- 13 bpm and -43 +/- 4 mmHg). The data of the present study suggest that serotonin acting on 5-HT3 receptors in the NTS may play an important inhibitory neuromodulatory role in the bradycardic response to activation of the von Bezold-Jarisch reflex
    corecore