43 research outputs found

    Quantum-Information Processing with Semiconductor Macroatoms

    Get PDF
    An all optical implementation of quantum information processing with semiconductor macroatoms is proposed. Our quantum hardware consists of an array of semiconductor quantum dots and the computational degrees of freedom are energy-selected interband optical transitions. The proposed quantum-computing strategy exploits exciton-exciton interactions driven by ultrafast sequences of multi-color laser pulses. Contrary to existing proposals based on charge excitations, the present all-optical implementation does not require the application of time-dependent electric fields, thus allowing for a sub-picosecond, i.e. decoherence-free, operation time-scale in realistic state-of-the-art semiconductor nanostructures.Comment: 11 pages, 5 figures, to be published in Phys. Rev. Lett., significant changes in the text and new simulations (figure 3

    Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot

    Full text link
    We perform quantum interference experiments on a single self-assembled semiconductor quantum dot. The presence or absence of a single exciton in the dot provides a qubit that we control with femtosecond time resolution. We combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa algorithm. The results show the feasibility of single qubit quantum logic in a semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the dephasing in the quantum dots. The introduction has been reworded for clarity. Minor readability fixe

    Dephasing times in quantum dots due to elastic LO phonon-carrier collisions

    Get PDF
    Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in QD's: second-order elastic interaction between quantum dot charge carriers and LO-phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing.Comment: 4 pages, 1 figure, accepted for Phys. Rev. Let

    Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach

    Get PDF
    We obtain the finite-temperature unconditional master equation of the density matrix for two coupled quantum dots (CQD) when one dot is subjected to a measurement of its electron occupation number using a point contact (PC). To determine how the CQD system state depends on the actual current through the PC device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process (a quantum-jump model). Then we show explicitly that our results can be extended to the quantum-diffusive limit when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schr\"{o}dinger equations for its conditioned state vector if and only if the information carried away from the CQD system by the PC reservoirs can be recovered by the perfect detection of the measurements.Comment: 14 pages, 1 figures, RevTex, onecolumn, to appear in Phys. Rev.

    Probing Single-Electron Spin Decoherence in Quantum Dots using Charged Excitons

    Full text link
    We propose to use optical detection of magnetic resonance (ODMR) to measure the decoherence time T_{2} of a single electron spin in a semiconductor quantum dot. The electron is in one of the spin 1/2 states and a circularly polarized laser can only create an optical excitation for one of the electron spin states due to Pauli blocking. An applied electron spin resonance (ESR) field leads to Rabi spin flips and thus to a modulation of the photoluminescence or, alternatively, of the photocurrent. This allows one to measure the ESR linewidth and the coherent Rabi oscillations, from which the electron spin decoherence can be determined. We study different possible schemes for such an ODMR setup, including cw or pulsed laser excitation.Comment: 8 pages, 7 figures. Proceedings of the PASPS3 conference, Santa Barbara, CA (USA). To appear in the Journal of Superconductivit

    Decoherence of quantum registers

    Get PDF
    The dynamical evolution of a quantum register of arbitrary length coupled to an environment of arbitrary coherence length is predicted within a relevant model of decoherence. The results are reported for quantum bits (qubits) coupling individually to different environments (`independent decoherence') and qubits interacting collectively with the same reservoir (`collective decoherence'). In both cases, explicit decoherence functions are derived for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: we show that this sensitivity is a characteristic of bothboth types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour ("recoherence") is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. Our results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the system's Hilbert space that do not get entangled with the environment, making them ideal elements for the engineering of ``noiseless'' quantum codes. We also discuss the relations between decoherence of the quantum register and computational complexity based on the new dynamical results obtained for the register density matrix.Comment: Typos corrected. Discussion and references added. 1 figure + 3 tables added. This updated version contains 13 (double column) pages + 8 figures. PRA in pres

    The Aharonov-Bohm effect for an exciton

    Full text link
    We study theoretically the exciton absorption on a ring shreded by a magnetic flux. For the case when the attraction between electron and hole is short-ranged we get an exact solution of the problem. We demonstrate that, despite the electrical neutrality of the exciton, both the spectral position of the exciton peak in the absorption, and the corresponding oscillator strength oscillate with magnetic flux with a period Φ0\Phi_0---the universal flux quantum. The origin of the effect is the finite probability for electron and hole, created by a photon at the same point, to tunnel in the opposite directions and meet each other on the opposite side of the ring.Comment: 13 RevTeX 3.0 pages plus 4 EPS-figures, changes include updated references and an improved chapter on possible experimental realization

    Dynamics of a mesoscopic qubit under continuous quantum measurement

    Get PDF
    We present the conditional quantum dynamics of an electron tunneling between two quantum dots subject to a measurement using a low transparency point contact or tunnel junction. The double dot system forms a single qubit and the measurement corresponds to a continuous in time readout of the occupancy of the quantum dot. We illustrate the difference between conditional and unconditional dynamics of the qubit. The conditional dynamics is discussed in two regimes depending on the rate of tunneling through the point contact: quantum jumps, in which individual electron tunneling current events can be distinguished, and a diffusive dynamics in which individual events are ignored, and the time-averaged current is considered as a continuous diffusive variable. We include the effect of inefficient measurement and the influence of the relative phase between the two tunneling amplitudes of the double dot/point contact system.Comment: 12 pages (one-column Revtex), 7 figure

    Hilbert space structure of a solid state quantum computer: two-electron states of a double quantum dot artificial molecule

    Get PDF
    We study theoretically a double quantum dot hydrogen molecule in the GaAs conduction band as the basic elementary gate for a quantum computer with the electron spins in the dots serving as qubits. Such a two-dot system provides the necessary two-qubit entanglement required for quantum computation. We determine the excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its dependence on an external magnetic field. In particular, we focus on the splitting of the lowest singlet and triplet states, the double occupation probability of the lowest states, and the relative energy scales of these states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We critically discuss the applicability of the envelope function approach in the current scheme and also the merits of various quantum chemical approaches in dealing with few-electron problems in quantum dots, such as the Hartree-Fock self-consistent field method, the molecular orbital method, the Heisenberg model, and the Hubbard model. We also discuss a number of relevant issues in quantum dot quantum computing in the context of our calculations, such as the required design tolerance, spin decoherence, adiabatic transitions, magnetic field control, and error correction.Comment: 22 2-column pages, 11 figures. Published versio

    A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    Get PDF
    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting
    corecore