26 research outputs found

    Atomic structure and segregation in alkali-metal heteroclusters

    Get PDF
    The ground-state atomic and electronic distributions in NamCsn clusters with composition m=n and m=2n have been calculated by minimizing the total cluster energy using the density-functional formalism. The approximation is made by replacing the total external potential of the ions by its spherical average around the cluster center during the iterative process of solving the Kohn-Sham equations for each geometry tested. In the size range studied here (up to 90 atoms per cluster), the cluster is composed of well-separated homoatomic Na and Cs shells, the external one always being a Cs shell. We have also found that the cohesive energy goes rapidly to the bulk limit. An analysis of the geometries shows strong cluster reconstruction with increasing size. By comparing the geometry of pure Nan with that of the Nan core in NanCsn for clusters formed by only an inner Na layer and an outer Cs layer, we have observed that the Nan core adopts a geometry different in most cases from that of the free Nan cluster, and such that the number of faces of the polyhedron formed by the Nan core is as close as possible to the number of external Cs atoms, in order to accomodate these Cs atoms on top of the faces of the polyhedron

    Optical properties of gas-phase tryptophan-silver cations : charge transfer from the indole ring to the silver atom

    No full text
    International audienceWe present a joint experimental and theoretical investigation of the electronic excitation spectra of the tryptophan-silver complex. The photodissociation spectrum of gas-phase [Trp-Ag]+ was measured from 215 to 330 nm using a quadrupole ion trap coupled to an optical parametric-oscillator laser. The calculated time-dependent density functional theory (TD-DFT) absorption spectra for different prototypes of structures are presented. Low-energy transitions that are experimentally observed are only calculated for the charge-solvation (CS) structures. These transitions are a signature of the metal- interaction in [Trp-Ag]+. The recorded spectrum is compared to a Boltzmann average of the absorption spectrum obtained from direct molecular dynamics (MD) simulations involving simultaneous transitions to excited states based on semiempirical configuration interaction (CI) calculations. The results demonstrate that charge transfer can be photoinduced from the indole ring to the silver atom
    corecore