7 research outputs found
A new dissipation term for finite-difference simulations in Relativity
We present a new numerical dissipation algorithm, which can be efficiently
used in combination with centered finite-difference methods. We start from a
formulation of centered finite-volume methods for Numerical Relativity, in
which third-order space accuracy can be obtained by employing just
piecewise-linear reconstruction. We obtain a simplified version of the
algorithm, which can be viewed as a centered finite-difference method plus some
'adaptive dissipation'. The performance of this algorithm is confirmed by
numerical results obtained from 3D black hole simulations.Comment: Talk presented at the Spanish Relativity Meeting (Tenerife 2007
Three little pieces for computer and relativity
Numerical relativity has made big strides over the last decade. A number of
problems that have plagued the field for years have now been mostly solved.
This progress has transformed numerical relativity into a powerful tool to
explore fundamental problems in physics and astrophysics, and I present here
three representative examples. These "three little pieces" reflect a personal
choice and describe work that I am particularly familiar with. However, many
more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation:
100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech
Republic. To appear in the Proceedings (Edition Open Access). Collects
results appeared in journal articles [72,73, 122-124
From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity
This article reviews some aspects in the current relationship between
mathematical and numerical General Relativity. Focus is placed on the
description of isolated systems, with a particular emphasis on recent
developments in the study of black holes. Ideas concerning asymptotic flatness,
the initial value problem, the constraint equations, evolution formalisms,
geometric inequalities and quasi-local black hole horizons are discussed on the
light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity.
Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24
November, 2006), part of the "General Relativity Trimester" at the Institut
Henri Poincare (Fall 2006). Comments and references added. Typos corrected.
Submitted to Classical and Quantum Gravit
Exploring new physics frontiers through numerical relativity
The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology