16 research outputs found

    Fabrication of calcium phosphate microcapsules using emulsion droplets stabilized with branched copolymers as templates

    Get PDF
    We report on a versatile and time-efficient method to fabricate calcium phosphate (CaP) microcapsules by utilizing oil-in-water emulsion droplets stabilized with synthetic branched copolymer (BCP) as templates. The BCP was designed to provide a suitable architecture and functionality to produce stable emulsion droplets, and to permit the mineralization of CaP at the surface of the oil droplet when incubated in a solution containing calcium and phosphate ions. The CaP shells of the microcapsules were established to be calcium deficient hydroxyapatite with incorporated chlorine and carbonate species. These capsule walls were made fluorescent by decoration with a fluorescein-bisphosphonate conjugate

    Effect of shearing stress on the radial heterogeneity and chromatographic performance of styrene-based polymerised high internal phase emulsions prepared in capillary format

    Get PDF
    Poly(styrene-co-divinylbenzene) monoliths were prepared from the polymerisation of water-in-monomer high internal phase emulsions consisting of a 90 vol% internal phase and stabilised by the non-ionic surfactant Span 80®. The materials were prepared in capillary housings of various internal diameters ranging from 150 μm to 540 μm by simply passing the emulsion through the capillaries. When low shear (300 rpm) was used for emulsification, the droplet and resulting void size distributions were observed to shift towards lower values when the emulsions were forced through capillaries of internal diameter less than 540 μm and all columns exhibited significant radial heterogeneity. When high shear was employed (14 000 rpm) the resulting emulsions preserved their structure when forced through these capillaries and possessed narrower void size distributions with no obvious radial heterogeneity observed upon curing. This resulted in significantly improved chromatographic performance for the separation of a standard mixture of proteins when compared to the materials prepared under low shear

    Physical Methods for the Preparation of Hybrid Nanocomposite Polymer Latex Particles

    Full text link
    In this chapter, we will highlight conceptual physical approaches towards the fabrication of nanocomposite polymer latexes in which each individual latex particle contains one or more "hard" nanoparticles, such as clays, silicates, titanates, or other metal(oxides). By "physical approaches" we mean that the "hard" nanoparticles are added as pre-existing entities, and are not synthesized in situ as part of the nanocomposite polymer latex fabrication process. We will narrow our discussion to focus on physical methods that rely on the assembly of nanoparticles onto the latex particles after the latex particles have been formed, or its reciprocal analogue, the adhesion of polymer onto an inorganic nanoparticle. First, will discuss the phenomenon of heterocoagulation and its various driving forces, such as electrostatic interactions, the hydrophobic effect, and secondary molecular interactions. We will then address methods that involve assembly of nanoparticles onto or around the more liquid precursors (i.e., swollen/growing latex particles or monomer droplets). We will focus on the phenomenon of Pickering stabilization. We will then discuss features of particle interaction with soft interfaces, and see how the adhesion of particles onto emulsion droplets can be applied in suspension, miniemulsion, and emulsion polymerization. Finally, we will very briefly mention some interesting methods that make use of interface-driven templating for making well-defined assembled clusters and supracolloidal structures

    Debut : collected studies on nitroxide-mediated controlled radical polymerization

    No full text

    Anisotropic silica colloids for light scattering

    Get PDF
    Anisotropic silica particles were used as model scattering enhancers and directly compared to their spherical counterparts. Furthermore, silica rods were assembled into micron-sized scattering particles. This allows for use in pigment formulations.</p
    corecore