8 research outputs found

    Charge-ordering phase transition and order-disorder effects in the Raman spectra of NaV2O5

    Full text link
    In the ac polarized Raman spectra of NaV2O5 we have found anomalous phonon broadening, and an energy shift of the low-frequency mode as a function of the temperature. These effects are related to the breaking of translational symmetry, caused by electrical disorder that originates from the fluctuating nature of the V {4.5+} valence state of vanadium. The structural correlation length, obtained from comparisons between the measured and calculated Raman scattering spectra, diverges at T< 5 K, indicating the existence of the long-range charge order at very low temperatures, probably at T=0 K.Comment: 8 pages, 4 figures, new version, to appear in PR

    Spin-Peierls transition in NaV2O5 in high magnetic fields

    Get PDF
    We investigate the magnetic field dependence of the spin-Peierls transition in NaV2_2O5_5 in the field range 16T-30T. The transition temperature exhibits a very weak variation with the field, suggesting a novel mechanism for the formation of the spin-Peierls state. We argue that a charge ordering transition accompanied by singlet formation is consistent with our observations.Comment: 4 pages, 3 figures, final version to appear in Phys. Rev. B (RC

    Low energy excitations and dynamic Dzyaloshinskii-Moriya interaction in α′\alpha'-NaV2_2O5_5 studied by far infrared spectroscopy

    Full text link
    We have studied far infrared transmission spectra of alpha'-NaV2O5 between 3 and 200cm-1 in polarizations of incident light parallel to a, b, and c crystallographic axes in magnetic fields up to 33T. The triplet origin of an excitation at 65.4cm-1 is revealed by splitting in the magnetic field. The magnitude of the spin gap at low temperatures is found to be magnetic field independent at least up to 33T. All other infrared-active transitions appearing below Tc are ascribed to zone-folded phonons. Two different dynamic Dzyaloshinskii-Moriya (DM) mechanisms have been discovered that contribute to the oscillator strength of the otherwise forbidden singlet to triplet transition. 1. The strongest singlet to triplet transition is an electric dipole transition where the polarization of the incident light's electric field is parallel to the ladder rungs, and is allowed by the dynamic DM interaction created by a high frequency optical a-axis phonon. 2. In the incident light polarization perpendicular to the ladder planes an enhancement of the singlet to triplet transition is observed when the applied magnetic field shifts the singlet to triplet resonance frequency to match the 68cm-1 c-axis phonon energy. The origin of this mechanism is the dynamic DM interaction created by the 68cm-1 c-axis optical phonon. The strength of the dynamic DM is calculated for both mechanisms using the presented theory.Comment: 21 pages, 22 figures. Version 2 with replaced fig. 18 were labels had been los

    A microscopic model for the structural transition and spin gap formation in alpha'-NaV2O5

    Full text link
    We present a microscopic model for alpha'-NaV2O5. Using an extended Hubbard model for the vanadium layers we derive an effective low-energy model consisting of pseudospin Ising chains and Heisenberg chains coupled to each other. We find a ``spin-Peierls-Ising'' phase transition which causes charge ordering on every second ladder and superexchange alternation on the other ladders. This transition can be identified with the first transition of the two closeby transitions observed in experiment. Due to charge ordering the effective coupling between the lattice and the superexchange is enhanced. This is demonstrated within a Slater-Koster approximation. It leads to a second instability with superexchange alternation on the charge-ordered ladders due to an alternating shift of the O sites on the rungs of that ladder. We can explain within our model the observed spin gap, the anomalous BCS ratio, and the anomalous shift of the critical temperature of the first transition in a magnetic field. To test the calculated superstructure we determine the low-energy magnon dispersion and find agreement with experiment.Comment: 32 pages, 12 figures include

    Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes

    No full text
    Strawberry contains high levels of micronutrients and phytochemical compounds. These exhibit functional roles in plant growth and metabolism and are also essential for the nutritional and organoleptic qualities of the fruit. The aim of the present work was to better characterize the phytochemical and antioxidant profiles of the fruit of nine different genotypes of strawberry, by measuring the total flavonoid, anthocyanin, vitamin C, and folate contents. Cultivar effects on the total antioxidant capacities of strawberries were also tested. In addition, the individual contribution of the main antioxidant compounds was assessed by HPLC separation coupled to an online postcolumn antioxidant detection system. This study showed the important role played by the genetic background on the chemical and antioxidant profiles of strawberry fruits. Significant differences were found between genotypes for the total antioxidant capacity and for all tested classes of compounds. The HPLC analyses confirmed qualitative and quantitative variability in the antioxidant profiles. These studies show that differences exist among cultivars, applicable in dietary studies in human subjects

    Diversity of arbuscular mycorrhizal fungi in soil from the Pampa Ondulada, Argentina, assessed by pyrosequencing and morphological techniques

    No full text
    Abstract: The aim of this study was to assess the effects of agronomic practices on the arbuscular mycorrhizal (AM) fungalcommunity in soils from the Pampa Ondulada region (Argentina), and to compare conclusions reached when using pyrosequencingor a morphological approach. The AM fungal diversity of 3 agricultural exploitations located in the Pampa Ondulada region(Argentina) was assessed by using 454 amplicon pyrosequencing and morphological (based on spore traits) approaches. Twokinds of soil managements are found in these sites: agronomic and non-agronomic. A total of 188 molecular operationaltaxonomic units and 29 morphological species of AM fungi were identified. No effect of soil management on AM richness wasdetected. AM fungal communities were more diverse and equitable in the absence of agronomic management. In contrast, theresults on -diversity varied according to the methodology used. We concluded that agronomic management of soil has anegative effect on AM fungal community biodiversity in the Pampa Ondulada region. We also conclude that both methodologiescomplement each other in the study of AM fungal ecology. This study greatly improved the knowledge about AM fungi in SouthAmerica where the molecular diversity of AM fungi was practically unknown
    corecore