14 research outputs found

    Triangulation network of 1929-1944 of the first 1:500 urban map of València

    Full text link
    [EN] Triangulation is a surveying method on which earlier maps made were based. Although the origins of the method can be traced back to the 16th century, it is still used today, with minor changes, to adjust networks observed with modern geodetic techniques. In this paper we present the geodetic survey work that was carried out for the primary triangulation network of the first 1:500 urban map of the city of València (Spain). It spanned from 1929 to 1944 and resulted in 421 maps covering about 174 square kilometres. We focus on four key elements to define the geometric framework of a map: (1) the geodetic network, (2) the cartographic projection, (3) the baseline measurements, and (4) the primary triangulation. The paper is based on the interpretation of original documents and field books recovered from the archives of the València City Council. In order to check the accuracy and consistency of the survey work, we recomputed all calculations directly from the field data, following the mathematical procedures of the time. We obtained a set of transformation parameters to convert the coordinates of 1929 to current coordinates based on the European Terrestrial Reference System of 1989 (ETRS89). Results showed that the 1929 primary triangulation angles and coordinates are accurate to 8 s of arc and 35 cm respectively, and that the coordinates transform well into the current reference system with average residuals of 26 cm across nine control points, demonstrating the high quality of the 1929 work.Villar-Cano, M.; Marqués-Mateu, Á.; Jiménez-Martínez, MJ. (2020). Triangulation network of 1929-1944 of the first 1:500 urban map of València. Survey Review (Online). 52(373):317-329. https://doi.org/10.1080/00396265.2018.1564599S31732952373Bitelli, G., Cremonini, S., & Gatta, G. (2014). Cartographic heritage: Toward unconventional methods for quantitative analysis of pre-geodetic maps. Journal of Cultural Heritage, 15(2), 183-195. doi:10.1016/j.culher.2013.04.003Blachut, T. J., Chrzanowski, A., & Saastamoinen, J. H. (1979). Urban Surveying and Mapping. doi:10.1007/978-1-4612-6145-2Brinker, R. C., & Minnick, R. (Eds.). (1987). The Surveying Handbook. doi:10.1007/978-1-4757-1188-2Gatta, G. 2010. Valorizzazione di cartografia storica attraverso moderne tecniche geomatiche: recupero metrico, elaborazione e consultazione in ambiente digitale [Valuation of historic cartography using modern geomatics techniques: metric recovering, making and use in digital environment]. Doctoral thesis. Bologna: Universitá di Bologna. 295 pages. (In Italian).Gorse, C., Johnston, D., & Pritchard, M. (2012). A Dictionary of Construction, Surveying and Civil Engineering. doi:10.1093/acref/9780199534463.001.0001Hotine, M. (1939). THE RE-TRIANGULATION OF GREAT BRITAIN IV—BASE MEASUREMENT. Empire Survey Review, 5(34), 211-225. doi:10.1179/sre.1939.5.34.211Kahmen, H., & Faig, W. (1988). Surveying. doi:10.1515/9783110845716Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS Satellite Surveying. doi:10.1002/9781119018612Murdin, P. (2009). Full Meridian of Glory. doi:10.1007/978-0-387-75534-2Schofield, W., & Breach, M. (2007). Engineering Surveying. doi:10.1201/b12847Seeber, G. (2003). Satellite Geodesy. doi:10.1515/9783110200089Snyder, J. P. (1987). Map projections: A working manual. Professional Paper. doi:10.3133/pp139

    Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks

    Get PDF
    Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity
    corecore