12 research outputs found

    Concentraciones bajas de extracto de semilla de uva mantienen la morfología de los osteoblastos, la adhesión celular y la mineralización

    Get PDF
    El aumento de la esperanza de vida ha provocado una mayor incidencia de la osteoporosis, caracterizada por un desequilibrio en el remodelado óseo. Se utilizan varios fármacos para su tratamiento, pero la mayoría promueven efectos secundarios indeseables. La presente investigación evaluó los efectos de dos concentraciones bajas de extracto de semilla de uva (ESG) rico en proantocianidinas sobre células osteoblásticas MC3T3-E1. Las células se cultivaron en un medio osteogénico y se dividieron en grupos de control (C), 0,1 µg/mL de GSE (GSE0,1) y 1,0 µg/mL de GSE (GSE1,0) para evaluar la morfología, adhesión y proliferación celular, la detección in situ de fosfatasa alcalina (ALP), la mineralización y la inmunolocalización de la osteopontina (OPN). Los datos obtenidos se analizaron mediante pruebas estadísticas para una significación del 5%. La morfología celular se mantuvo con ambas concentraciones de GSE, mientras que la adhesión celular aumentó significativamente a los tres días en todos los grupos. La proliferación celular aumentó significativamente a los siete días de cultivo, seguida de un descenso significativo en todos los periodos experimentales, sin diferencias estadísticas entre ellos. La detección in situ de ALP y mineralización aumentó con el tiempo, pero dentro de cada período no se observaron diferencias estadísticas entre los grupos. La expresión de la osteopontina se distribuyó regularmente con mayor intensidad a las 24 horas en el grupo GSE0.1. A los tres días, la expresión de OPN era más intensa en el grupo de control, seguido de los grupos GSE0.1 y GSE1.0. Los datos obtenidos sugieren que bajas concentraciones de GSE no afectan a la morfología y pueden estimular la actividad funcional de las células osteoblásticas.The increase in life expectancy has led to a higher incidence of osteoporosis, characterized by an imbalance in bone remodeling. Several drugs are used for its treatment, but most promote undesirable side effects. The present investigation evaluated the effects of two low concentrations of grape seed extract (GSE) rich in proanthocyanidins on MC3T3-E1 osteoblastic cells. The cells were cultured in an osteogenic medium and divided into control (C), 0.1 µg/mL GSE (GSE0.1), and 1.0 µg/mL GSE (GSE1.0) groups to evaluate cell morphology, adhesion, and proliferation, in situ alkaline phosphatase (ALP) detection, mineralization and immunolocalization of osteopontin (OPN). The data obtained were analyzed by statistical tests for a significance of 5%. Cell morphology was maintained with both GSE concentrations, whereas cell adhesion significantly increased within three days in all groups. Cell proliferation increased significantly at seven days of culture, followed by a significant decrease in all experimental periods, with no statistical difference among them. In situ detection of ALP and mineralization increased with time, but within each period, no statistical differences among groups were observed. The expression of osteopontin was distributed regularly with more intensity after 24 hours in the GSE0.1 group. After three days, OPN expression was more intense in the control group, followed by GSE0.1 and GSE1.0 groups. Data obtained suggest that low concentrations of GSE do not affect the morphology and may stimulate the functional activity of osteoblastic cell

    In vitro evaluation of the odontogenic potential of mouse undifferentiated pulp cells

    Get PDF
    The aim of this study was to evaluate the odontogenic potential of undifferentiated pulp cells (OD-21 cell line) through chemical stimuli in vitro. Cells were divided into uninduced cells (OD-21), induced cells (OD-21 cultured in supplemented medium/OD-21+OM) and odontoblast-like cells (MDPC-23 cell line). After 3, 7, 10 and 14 days of culture, it was evaluated: proliferation and cell viability, alkaline phosphatase activity, total protein content, mineralization, immunolocalization of dentin matrix acidic phosphoprotein 1 (DMP1), alkaline phosphatase (ALP) and osteopontin (OPN) and quantification of genes ALP, OSTERIX (Osx), DMP1 and runt-related transcription factor 2 (RUNX2) through real-time polymerase chain reaction (PCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (p<0.05). There was a decrease in cell proliferation in OD-21 + OM, whereas cell viability was similar in all groups, except at 7 days. The amount of total protein was higher in group OD-21 + OM in all periods; the same occurred with ALP activity after 10 days when compared with OD-21, with no significant differences from the MDPC-23 group. Mineralization was higher in OD-21+OM when compared with the negative control. Immunolocalization demonstrated that DMP1 and ALP were highly expressed in MDPC-23 cells and OD-21 + OM cells, whereas OPN was high in all groups. Real-time PCR revealed that DMP1 and ALP expression was higher in MDPC-23 cell cultures, whereas RUNX2 was lower for these cells and higher for OD-21 negative control. Osx expression was lower for OD-21 + OM. These results suggest that OD-21 undifferentiated pulp cells have odontogenic potential and could be used in dental tissue engineering

    Impact of calcium aluminate cement with additives on dental pulp-derived cells

    Get PDF
    Calcium aluminate cement (CAC) has been highlighted as a promising alternative for endodontic use aiming at periapical tissue repair. However, its effects on dental pulp cells have been poorly explored. Objective: This study assessed the impact of calcium chloride (CaCl2) and bismuth oxide (Bi2O3) or zinc oxide (ZnO) additives on odontoblast cell response to CAC. Methodology: MDPC-23 cells were exposed for up to 14 d: 1) CAC with 2.8% CaCl2&nbsp;and 25% ZnO (CACz); 2) CAC with 2.8% CaCl2&nbsp;and 25% Bi2O3&nbsp;(CACb); 3) CAC with 10% CaCl2&nbsp;and 25% Bi2O3&nbsp;(CACb+); or 4) mineral trioxide aggregate (MTA), placed on inserts. Non-exposed cultures served as control. Cell morphology, cell viability, gene expression of alkaline phosphatase (ALP), bone sialoprotein (BSP), and dentin matrix protein 1 (DMP-1), ALP activity, and extracellular matrix mineralization were evaluated. Data were compared using ANOVA (α=5%). Results: Lower cell density was detected only for MTA and CACb+ compared with Control, with areas showing reduced cell spreading. Cell viability was similar among groups at days one and three (p&gt;0.05). CACb+ and MTA showed the lowest cell viability values at day seven (p&gt;0.05). CACb and CACb+ promoted higher ALP and BSP expression compared with CACz (p&lt;0.05); despite that, all cements supported ALP activity. Matrix mineralization were enhanced in CACb+ and MTA. Conclusion: In conclusion, CAC with Bi2O3, but not with ZnO, supported the expression of odontoblastic phenotype, but only the composition with 10% CaCl2&nbsp;promoted mineralized matrix formation, rendering it suitable for dentin-pulp complex repair

    Low-Level Laser Therapy Influences Mouse Odontoblast-Like Cell Response in Vitro

    No full text
    Objective: The purpose of this study was to analyze the influence of two different irradiation times with 85mW/cm(2) 830nm laser on the behavior of mouse odontoblast-like cells. Background data: The use of low-level laser therapy (LLLT) to stimulate pulp tissue is a reality, but few reports relate odontoblastic responses to irradiation in in vitro models. Methods: Odontoblast-like cells (MDPC-23) were cultivated and divided into three groups: control/nonirradiated (group 1); or irradiated with 85mW/cm(2), 830nm laser for 10 sec (0.8 J/cm(2)) (group 2); or for 50 sec (4.2 J/cm(2)) (group 3) with a wavelength of 830 nm. After 3, 7, and 10 days, it was analyzed: growth curve and cell viability, total protein content, alkaline phosphatase (ALP) activity, calcified nodules detection and quantification, collagen immunolocalization, vascular endothelial growth factor (VEGF) expression, and real-time polymerase chain reaction (PCR) for DMP1 gene. Data were analyzed by Kruskall-Wallis test (alpha = 0.05). Results: Cell growth was smaller in group 2 (p &lt; 0.01), whereas viability was similar in all groups and at all periods. Total protein content and ALP activity increased on the 10th day with 0.8 J/cm(2) (p &lt; 0.01), as well as the detection and quantification of mineralization nodules (p &lt; 0.05), collagen, and VEGF expression (p &lt; 0.01). The expression of DMP1 increased in all groups (p &lt; 0.05) compared with control at 3 days, except for 0.8 J/cm(2) at 3 days and control at 10 days. Conclusions: LLLT influenced the behavior of odontoblast-like cells; the shorter time/smallest energy density promoted the expression of odontoblastic phenotype in a more significant way.Sao Paulo Research Foundation (FAPESP) [2006/06313-7]Sao Paulo Research Foundation (FAPESP

    Effect of grape seed extract (GSE) on functional activity and mineralization of OD-21 and MDPC-23 cell lines

    No full text
    Abstract Recent studies on functional tissue regeneration have focused on substances that favor cell proliferation and differentiation, including the bioactive phenolic compounds present in grape seed extract (GSE). The aim of this investigation was to evaluate the stimulatory potential of GSE in the functional activity of undifferentiated pulp cells and odontoblast-like cells. OD-21 and MDPC-23 cell lines were cultivated in odontogenic medium until subconfluence, seeded in 24-well culture plates in a concentration of 2x104/well and divided into: 1) OD-21 without GSE; 2) OD-21+10 µg/mL of GSE; 3) MDPC-23 without GSE; 4) MDPC-23+10 µg/mL of GSE. Cell proliferation, in situ detection of alkaline phosphatase (ALP) and total protein content were assessed after 3, 7 and 10 days, and mineralization was evaluated after 14 days. The data were analyzed by ANOVA statistical tests set at a 5% level of significance. Results revealed that cell proliferation increased after 10 days, and protein content, after 7 days of culture in MDPC-23 cells. In situ ALP staining intensity was higher in undifferentiated pulp cells and odontoblast-like cells after 7 and 10 days, respectively. A discrete increase in MDPC-23 mineralization after GSE treatment was observed despite OD-21 cells presenting a decrease in mineralized nodule deposits. Data suggest that GSE favors functional activity of differentiated cells more broadly than undifferentiated cells (OD-21). More studies with different concentrations of GSE must be conducted to confirm its benefits to cells regarding dentin regeneration

    Oxidative Nanopatterning of Titanium Surface Influences mRNA and MicroRNA Expression in Human Alveolar Bone Osteoblastic Cells

    No full text
    Titanium implants have been extensively used in orthopedic and dental applications. It is well known that micro- and nanoscale surface features of biomaterials affect cellular events that control implant-host tissue interactions. To improve our understanding of how multiscale surface features affect cell behavior, we used microarrays to evaluate the transcriptional profile of osteoblastic cells from human alveolar bone cultured on engineered titanium surfaces, exhibiting the following topographies: nanotexture (N), nano+submicrotexture (NS), and rough microtexture (MR), obtained by modulating experimental parameters (temperature and solution composition) of a simple yet efficient chemical treatment with a H2SO4/H2O2 solution. Biochemical assays showed that cell culture proliferation augmented after 10 days, and cell viability increased gradually over 14 days. Among the treated surfaces, we observed an increase of alkaline phosphatase activity as a function of the surface texture, with higher activity shown by cells adhering onto nanotextured surfaces. Nevertheless, the rough microtexture group showed higher amounts of calcium than nanotextured group. Microarray data showed differential expression of 716 mRNAs and 32 microRNAs with functions associated with osteogenesis. Results suggest that oxidative nanopatterning of titanium surfaces induces changes in the metabolism of osteoblastic cells and contribute to the explanation of the mechanisms that control cell responses to micro- and nanoengineered surfaces

    Preadministration of yerba mate (Ilex paraguariensis) helps functional activity and morphology maintenance of MC3T3-E1 osteoblastic cells after in vitro exposition to hydrogen peroxide

    No full text
    Natural substances with antioxidant effects may benefit prevention and treatment of people with or prone to bone diseases after menopause, such as osteoporosis. This study aimed to evaluate the in vitro effect of preadministration of yerba mate extract (YM) in the metabolism of MC3T3-E1 osteoblasts exposed to hydrogen peroxide (H2O2). The cells (MC3T3-E1) were cultured in 24-well plates with the concentration of 1 μg/mL yerba mate extract dissolved in culture medium throughout the culture period. Four hours before each experiment, 400 μmol/L H2O2 was added per well to simulate oxidative stress. There were evaluated cell adhesion and proliferation, in situ detection of alkaline phosphatase (ALP), mineralized nodules, and immunolocalization of osteocalcin (OCN), bone sialoprotein (BSP) and alkaline phosphatase (ALP) proteins. The results showed that YM preadministration to H2O2 exposition significatively increased cell adhesion after 3 days as well as proliferation and in situ ALP detection after 10 and 7 days respectively, when compared to H2O2 group. Besides, staining of OCN and BSP proteins was less intense and scattered in poor spread cells with cytoskeletal changes in H2O2 group when compared to control and YM H2O2 group. ALP staining was restrained to intracellular regions and similar in all experimental groups. Our results suggest that preadministration of yerba mate extract may prevent deleterious effects in the morphology and functional activity of osteoblasts exposed to H2O2, which could enable the maintenance of extracellular matrix in the presence of oxidative stress

    Human Alveolar Bone-Derived Cell-Culture Behaviour on Biodegradable Poly(L-lactic Acid)

    No full text
    Poly(L-lactic acid) (PLA) is a polymer of great technological interest, whose excellent mechanical properties, thermal plasticity and bioresorbability render it potentially useful for environmental applications, as a biodegradable plastic and as a biocompatible material in biomedicine. The interactions between an implant material surface and host cells play central roles in the integration, biological performance and clinical success of implanted biomedical devices. Osteoblasts from human alveolar bone were chosen to investigate the cell behaviour when in contact with PLA discs. Cell morphology and adhesion through osteopontin (OPN) and fibronectin (FN) expression were evaluated in the initial osteogenesis, as well as cell proliferation, alkaline phosphatase activity and bone nodule formation. It was shown that the polymer favoured cell attachment. Cell proliferation increased until 21 days but in a smaller rate when compared to the control group. On the other hand, ALP activity and bone mineralization were not enhanced by the polymer. It is suggested that this polymer favours cell adhesion in the early osteogenesis in vitro, but it does not enhance differentiation and mineralization. (C) Koninklijke Brill NV, Leiden, 2009FAPESPCNP
    corecore