165 research outputs found

    Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in β\beta-Li2IrO3: full solution via magnetic resonant x-ray diffraction

    Full text link
    The recently-synthesized iridate β\beta-Li2_2IrO3_3 has been proposed as a candidate to display novel magnetic behavior stabilized by frustration effects from bond-dependent, anisotropic interactions (Kitaev model) on a three-dimensional "hyperhoneycomb" lattice. Here we report a combined study using neutron powder diffraction and magnetic resonant x-ray diffraction to solve the complete magnetic structure. We find a complex, incommensurate magnetic order with non-coplanar and counter-rotating Ir moments, which surprisingly shares many of its features with the related structural polytype "stripyhoneycomb" γ\gamma-Li2_2IrO3_3, where dominant Kitaev interactions have been invoked to explain the stability of the observed magnetic structure. The similarities of behavior between those two structural polytypes, which have different global lattice topologies but the same local connectivity, is strongly suggestive that the same magnetic interactions and the same underlying mechanism governs the stability of the magnetic order in both materials, indicating that both β\beta- and γ\gamma-Li2_2IrO3_3 are strong candidates to realize dominant Kitaev interactions in a solid state material.Comment: 14 pages, 9 figure

    Electrical switching of magnetic polarity in a multiferroic BiFeO3 device at room temperature

    Full text link
    We have directly imaged reversible electrical switching of the cycloidal rotation direction (magnetic polarity) in a (111)-BiFeO3 epitaxial-film device at room temperature by non-resonant x-ray magnetic scattering. Consistent with previous reports, fully relaxed (111)-BiFeO3 epitaxial films consisting of a single ferroelectric domain were found to comprise a sub-micron-scale mosaic of magneto-elastic domains, all sharing a common direction of the magnetic polarity, which was found to switch reversibly upon reversal of the ferroelectric polarization without any measurable change of the magneto-elastic domain population. A real-space polarimetry map of our device clearly distinguished between regions of the sample electrically addressed into the two magnetic states with a resolution of a few tens of micron. Contrary to the general belief that the magneto-electric coupling in BiFeO3 is weak, we find that electrical switching has a dramatic effect on the magnetic structure, with the magnetic moments rotating on average by 90 degrees at every cycle.Comment: 6 pages, 5 figures; corrected figure

    Direct observation of charge order in triangular metallic AgNiO2 by single-crystal resonant X-ray scattering

    Full text link
    We report resonant X-ray scattering measurements on the orbitally-degenerate triangular metallic antiferromagnet 2H-AgNiO2 to probe the spontaneous transition to a triple-cell superstructure at temperatures below 365 K. We observe a strong resonant enhancement of the supercell reflections through the Ni K-edge. The empirically extracted K-edge shift between the crystallographically-distinct Ni sites of 2.5(3) eV is much larger than the value expected from the shift in final states, and implies a core-level shift of ~1 eV, thus providing direct evidence for the onset of spontaneous honeycomb charge order in the triangular Ni layers. We also provide band-structure calculations that explain quantitatively the observed edge shifts in terms of changes in the Ni electronic energy levels due to charge order and hybridization with the surrounding oxygens.Comment: 5 pages, 4 figure

    Non-coplanar and counter-rotating incommensurate magnetic order stabilized by Kitaev interactions in Îł\gamma-Li2IrO3

    Full text link
    Materials that realize Kitaev spin models with bond-dependent anisotropic interactions have long been searched for, as the resulting frustration effects are predicted to stabilize novel forms of magnetic order or quantum spin liquids. Here we explore the magnetism of Îł\gamma-Li2_2IrO3_3, which has the topology of a 3D Kitaev lattice of inter-connected Ir honeycombs. Using resonant magnetic x-ray diffraction we find a complex, yet highly-symmetric incommensurate magnetic structure with non-coplanar and counter-rotating Ir moments. We propose a minimal Kitaev-Heisenberg Hamiltonian that naturally accounts for all key features of the observed magnetic structure. Our results provide strong evidence that Îł\gamma-Li2_2IrO3_3 realizes a spin Hamiltonian with dominant Kitaev interactions.Comment: 10 pages, 7 figure

    Proteinase Activated Receptor 4 in the Jejunum of Healthy Horses and of Horses With Epiploic Hernia

    Get PDF
    Proteinase activated receptor 4 (PAR4) in the gastrointestinal tract is involved in the regulation of inflammation and pain pathways. The aim of the present study was to evaluate the distribution and expression of PAR4 in the jejunum of healthy horses and in the pathologic tracts from horses undergoing surgery for herniation of the small intestine through the epiploic foramen. Eight healthy horses (Group H) and eight horses with epiploic hernia (Group EH) were included; the jejunum samples were collected at the slaughter or intraoperatively after enterectomy, respectively. To evaluate PAR4 expression in sections of the jejunum, immunofluorescence, western blot and quantitative polymerase chain reaction (qRT-PCR) were performed. Immunohistochemistry of PAR4 in the jejunum of the healthy horses showed that receptors are predominantly expressed in the immune cell population scattered throughout the lamina propria of the mucosa and in the submucosa. Quantitative PCR data demonstrated that PAR4 mRNA was detectable in all of the samples analyzed without any difference between the H and the EH groups, however the PAR4 protein level was significantly lower in the jejunums of the EH horses. In the Group EH horses, PAR4 immunoreactivity was mainly expressed in the mast cells and was extensively distributed in the sierosa. In the lamina propria of mucosa of Group EH, leukocytes were less abundant than in Group H. In this study, the distribution and expression of PAR4 in the jejunums of the healthy horses and in those with spontaneous occurring epiploic hernia was demonstrated

    Expression of Proteinase-Activated Receptor 2 During Colon Volvulus in the Horse

    Get PDF
    Large colon volvulus in horses is associated with a poor prognosis, especially when ischemic-reperfusion injury of the affected intestinal tract develops. Proteinase-activated receptor 2 (PAR2) plays an important role in the pathogenesis of inflammation in the gastrointestinal tract. The aim of this study was to evaluate the distribution and expression of PAR2 in colonic pelvic flexure of horses spontaneously affected by large colon volvulus (CVH group). Eight horses admitted for severe abdominal colon volvolus and which underwent surgery were included. Colon samples were collected after enterotomy. Data previously obtained from healthy horses were used as a control group. Histologic evaluation was carried out to grade the severity of the colon lesions. Immunofluorescence, western blot and quantitative polymerase chain reaction (RT-qPCR) were carried out on colon samples to evaluate PAR2 expression. In addition, the transcriptional profile of cytokines and chemokines was evaluated using RT2 Profiler™ PCR Array Horse Cytokines & Chemokines. Three out of the eight patients were euthanised due to clinical deterioration. Immunostaining for PAR2 was observed in the enterocytes, intestinal glands and neurons of the submucosal and myenteric plexi. In the CVH horses, the expression of PAR2 mesenger RNA (mRNA) did not differ significantly from that of the healthy animals; western blots of the mucosa of the colon tracts showed a clear band of the expected molecular weight for PAR2 (~44 kDa) and a band smaller than the expected molecular weight for PAR2 (25kDa), suggesting its activation. The gene expressions for C-X-C motif ligand 1 (CXCL1); interleukin 8 (IL8), macrophage inflammatory protein 2 beta (MIP-2BETA) were upregulated in the colic horses as compared with the colons of the healthy horses. Therefore, in the present study, the expression and activation of PAR2 in the colons of horses in the presence of an inflammatory reaction like that occurring in those with spontaneous colon volvulus was confirmed

    studies on tursiops truncatus and stenella coeruleoalba dolphin species from retinal cell morphological comparisons towards its surrounding environment

    Get PDF
    AbstractIn this current study, the retinal cell morphology of two dolphin species, Tursiops truncatus and Stenella coeruleoalba was compared, and supplemented with a miniature review of how it relates to surrounding environment. Retinal cell morphology involved sectioning and retino-separation of eyes, morphometric analysis of retinal cell layers and its corresponding neurons, followed by stratigraphy of both retina and area/density of ganglion neuron cell bodies. A qualification criteria was developed to describe both thickness and visibility. To relate with surrounding environment of studied species, we searched relevant synthesized literature combining such key words as 'dolphin', 'Tursiops truncatus', 'Stenella coeruleoalba', 'eye', 'vision', 'ecology' and 'environment'. Retinal cell morphology comparisons showed that the thickness of outer nuclear layer had upper (37.8 – 38.5 μm) whereas outer plexiform layer had lower (7.8 – 8.7 μm) range values, with some differences between individual retinal layers (p<0.05) but specific to some cases. Area of ganglion cell layer of multipolar neurons of retina of both studied species could surpass the 800 μm2 mark, which suggests the presence of 'giant' size cell types. Plausibly, the retino-morphological comparisons of studied dolphin species depict the context of micro-view, and able to relate with a macro-view with respect to its surrounding environment

    Multi-Donor longitudinal antibody repertoire sequencing reveals the existence of public antibody clonotypes in HIV-1 infection

    Get PDF
    Characterization of single antibody lineages within infected individuals has provided insights into the development of Env-specific antibodies. However, a systems-level understanding of the humoral response against HIV-1 is limited. Here, we interrogated the antibody repertoires of multiple HIV-infected donors from an infection-naive state through acute and chronic infection using next-generation sequencing. This analysis revealed the existence of “public” antibody clonotypes that were shared among multiple HIV-infected individuals. The HIV-1 reactivity for representative antibodies from an identified public clonotype shared by three donors was confirmed. Furthermore, a meta-analysis of publicly available antibody repertoire sequencing datasets revealed antibodies with high sequence identity to known HIV-reactive antibodies, even in repertoires that were reported to be HIV naive. The discovery of public antibody clonotypes in HIV-infected individuals represents an avenue of significant potential for better understanding antibody responses to HIV-1 infection, as well as for clonotype-specific vaccine development
    • …
    corecore