68 research outputs found

    Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound specific isotope analysis and in situ microcosms

    Get PDF
    Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA) and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed no significant carbon isotope fractionation but low hydrogen isotope fractionation of up to +14 ¿ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [13C6]-ETBE (BACTRAP®s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant 13C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation

    Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies

    No full text
    Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations

    Use of lead alloys in electrowinning of metals

    No full text

    Bacterial characterization of B

    No full text

    Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques.

    No full text
    A toluene-degrading microbial consortium was enriched directly in a BTEX-contaminated aquifer under sulfate-reducing conditions using in situ microcosms consisting of toluene-loaded activated carbon pellets. Degradation of toluene and concomitant sulfide production by the consortium was subsequently demonstrated in laboratory microcosms. The consortium was physiologically and phylogenetically characterized by isotope tracer experiments using nonlabeled toluene, [13C]-alpha-toluene or [13C(7)]-toluene as growth substrates. Cells incubated with [13C]-alpha-toluene or [13C(7)]-toluene incorporated 8-15 at.% 13C and 51-57 at.% 13C into total lipid fatty acids, respectively, indicating a lower specific incorporation of 13C from [13C(7)]-toluene. In order to identify the toluene-assimilating bacteria, the incorporation of carbon from both [13C]-alpha-toluene and [13C(7)]-toluene into rRNA was analyzed by stable isotope probing. Time and buoyant density-resolved 16S rRNA gene-based terminal restriction fragment length polymorphism profiles, combined with cloning and sequencing, revealed that an uncultured bacterium (99% sequence similarity) related to the genus Desulfocapsa was the main toluene-degrading organism in the consortium. The ratio of the respective terminal restriction fragments changed over time, indicating trophic interactions within this consortium
    • …
    corecore