8 research outputs found

    A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep

    Get PDF
    BACKGROUND: A genome wide association study for litter size in Norwegian White Sheep (NWS) was conducted using the recently developed ovine 50K SNP chip from Illumina. After genotyping 378 progeny tested artificial insemination (AI) rams, a GWAS analysis was performed on estimated breeding values (EBVs) for litter size. RESULTS: A QTL-region was identified on sheep chromosome 5, close to the growth differentiation factor 9 (GDF9), which is known to be a strong candidate gene for increased ovulation rate/litter size. Sequencing of the GDF9 coding region in the most extreme sires (high and low BLUP values) revealed a single nucleotide polymorphism (c.1111G>A), responsible for a Val→Met substitution at position 371 (V371M). This polymorphism has previously been identified in Belclare and Cambridge sheep, but was not found to be associated with fertility. In our NWS-population the c.1111G>A SNP showed stronger association with litter size than any other single SNP on the Illumina 50K ovine SNP chip. Based on the estimated breeding values, daughters of AI rams homozygous for c.1111A will produce minimum 0.46 - 0.57 additional lambs compared to daughters of wild-type rams. CONCLUSION: We have identified a missense mutation in the bioactive part of the GDF9 protein that shows strong association with litter size in NWS. Based on the NWS breeding history and the marked increase in the c.1111A allele frequency in the AI ram population since 1983, we hypothesize that c.1111A allele originate from Finnish landrace imported to Norway around 1970. Because of the widespread use of Finnish landrace and the fact that the ewes homozygous for the c.1111A allele are reported to be fertile, we expect the commercial impact of this mutation to be high

    Insertion of an endogenous Jaagsiekte sheep retrovirus element into the BCO2 - gene abolishes its function and leads to yellow discoloration of adipose tissue in Norwegian Spælsau (Ovis aries).

    Get PDF
    Background: The accumulation of carotenoids in adipose tissue leading to yellow fat is, in sheep, a heritable recessive trait that can be attributed to a nonsense mutation in the beta-carotene oxygenase 2 (BCO2) gene. However, not all sheep breeds suffering from yellow fat have this nonsense mutation, meaning that other functional mechanisms must exist. We investigated one such breed, the Norwegian spælsau. Results: In spælsau we detected an aberration in BCO2 mRNA. Nanopore sequencing of genomic DNA revealed the insertion of a 7.9 kb endogenous Jaagsiekte Sheep Retrovirus (enJSRV) sequence in the first intron of the BCO2 gene. Close examination of its cDNA revealed that the BCO2 genes first exon was spliced together with enJSRV-sequence immediately downstream of a potential -AG splice acceptor site at enJSRV position 415. The hybrid protein product consists of 29 amino acids coded by the BCO2 exon 1, one amino acid coded by the junction sequence, followed by 28 amino acids arbitrary coded for by the enJSRV-sequence, before a translation stop codon is reached. Conclusions: Considering that the functional BCO2 protein consists of 575 amino acids, it is unlikely that the 58 amino acid BCO2/enJSRV hybrid protein can display any enzymatic function. The existence of this novel BCO2 allele represents an alternative functional mechanism accounting for BCO2 inactivation and is a perfect example of the potential benefits for searching for structural variants using long-read sequencing data
    corecore