79 research outputs found

    Non-Hermitian topological whispering gallery

    Get PDF
    In 1878, Lord Rayleigh observed the highly celebrated phenomenon of sound waves that creep around the curved gallery of St Paul's Cathedral in London1,2. These whispering-gallery waves scatter efficiently with little diffraction around an enclosure and have since found applications in ultrasonic fatigue and crack testing, and in the optical sensing of nanoparticles or molecules using silica microscale toroids. Recently, intense research efforts have focused on exploring non-Hermitian systems with cleverly matched gain and loss, facilitating unidirectional invisibility and exotic characteristics of exceptional points3,4. Likewise, the surge in physics using topological insulators comprising non-trivial symmetry-protected phases has laid the groundwork in reshaping highly unconventional avenues for robust and reflection-free guiding and steering of both sound and light5,6. Here we construct a topological gallery insulator using sonic crystals made of thermoplastic rods that are decorated with carbon nanotube films, which act as a sonic gain medium by virtue of electro-thermoacoustic coupling. By engineering specific non-Hermiticity textures to the activated rods, we are able to break the chiral symmetry of the whispering-gallery modes, which enables the out-coupling of topological "audio lasing" modes with the desired handedness. We foresee that these findings will stimulate progress in non-destructive testing and acoustic sensing.This work was supported by the National Basic Research Program of China (2017YFA0303702), NSFC (12074183, 11922407, 11904035, 11834008, 11874215 and 12104226) and the Fundamental Research Funds for the Central Universities (020414380181). Z.Z. acknowledges the support from the China National Postdoctoral Program for Innovative Talents (BX20200165) and the China Postdoctoral Science Foundation (2020M681541). L.Z. acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement 801538. J.C. acknowledges support from the European Research Council (ERC) through the Starting Grant 714577 PHONOMETA and from the MINECO through a Ramón y Cajal grant (grant number RYC-2015-17156)

    Comparison of navigation systems for total knee arthroplasty: A systematic review and meta-analysis

    Get PDF
    BackgroundComponent alignment is a crucial factor affecting the clinical outcome of total knee arthroplasty (TKA). Accelerometer-based navigation (ABN) systems were developed to improve the accuracy of alignment during surgery. This study aimed to compare differences in component alignment, clinical outcomes, and surgical duration when using conventional instrumentation (CONI), ABN, and computer navigation (CN) systems.MethodsA comprehensive literature search was carried out using the Web of Science, Embase, PubMed, and Cochrane databases. Articles that met the eligibility criteria were included in the study. Meta-analyses were performed using the Cochrane Collaboration Review Manager based on Cochrane Review Method. The variables used for the analyses were postoperative clinical outcome (PCO), surgical duration, and component alignment, including the hip-knee-ankle (HKA) angle, coronal femoral angle (CFA), coronal tibial angle (CTA), sagittal femoral angle (SFA), sagittal tibial angle (STA), and the outliers for the mentioned angles. The mean difference (MD) was calculated to determine the difference between the surgical techniques for continuous variables and the odds ratio (OR) was used for the dichotomous outcomes.ResultsThe meta-analysis of the CONI and ABN system included 18 studies involving 2,070 TKA procedures, while the comparison of the ABN and CN systems included 5 studies involving 478 TKA procedures. The results showed that the ABN system provided more accurate component alignment for HKA, CFA, CTA, and SFA and produced fewer outliers for HKA, CFA, CTA, and STA. However, while the ABN system also required a significantly longer surgical time than the CONI approach, there was no statistical difference in PCO for the two systems. For the ABN and CN systems, there was no statistical difference in all variables except for the ABN system having a significantly shorter surgical duration.ConclusionThere was no significant difference in the accuracy of component alignment between the ABN and CN systems, but the ABN approach had a shorter surgical duration and at lower cost. The ABN system also significantly improved the accuracy of component alignment when compared to the CONI approach, although the surgery was longer. However, there was no significant difference in PCO between the CONI, ABN, and CN systems

    Mechanical alignment tolerance of a cruciate-retaining knee prosthesis under gait loading—A finite element analysis

    Get PDF
    Component alignment is one of the most crucial factors affecting total knee arthroplasty’s clinical outcome and survival. This study aimed to investigate how coronal, sagittal, and transverse malalignment affects the mechanical behavior of the tibial insert and to determine a suitable alignment tolerance on the coronal, sagittal, and transverse planes. A finite element model of a cruciate-retaining knee prosthesis was assembled with different joint alignments (−10°, −7°, −5°, −3°, 0°, 3°, 5°, 7°, 10°) to assess the effect of malalignment under gait loading. The results showed that varus or valgus, extension, internal rotation, and excessive external rotation malalignments increased the maximum Von Mises stress and contact pressure on the tibial insert. The mechanical alignment tolerance of the studied prosthesis on the coronal, sagittal, and transverse planes was 3° varus to 3° valgus, 0°–10° flexion, and 0°–5° external rotation, respectively. This study suggests that each prosthesis should include a tolerance range for the joint alignment angle on the three planes, which may be used during surgical planning

    Pseudospin induced topological corner state at intersecting sonic lattices

    Get PDF
    Inspired by the discoveries of electronic topological phases and topological insulators, topologically protected boundary states in classical wave-based systems have attracted considerable interest in the last decade. Most recently, acoustic higher-order topological insulators and Kekulé-distorted sonic lattices have been proposed to support topological corner states and zero-dimensional bound states. Here, we demonstrate a domain wall induced topological corner state that is bound at the crossing point among finite acoustic graphenelike crystals. The approach is based on designing multipolar pseudospin resonances, which give rise to topologically trivial and nontrivial transitions across the domain walls that flank this unusual corner excitation toward the crossing point. By deliberately adding a substantial amount of defects into the cavities of the sonic lattice, we find that the pseudospin induced topological corner state remains entirely unaffected and pinned spectrally to the complete audible band gap. Our findings may thus have the potential to broaden the possibilities for sound confinement and focusing.This work was supported by National Key R&D Program of China (Grant No. 2017YFA0303702), NSFC (Grants No. 11922407, No. 11834008, No. 11874215, and No. 11674172), Jiangsu Provincial NSF (BK20160018) and the Fundamental Research Funds for the Central Universities (Grant No. 020414380001). J.C. acknowledges the support from the European Research Council (ERC) through the Starting Grant No. 714577 PHONOMETA and from the MINECO through a Ramón y Cajal grant (Grant No. RYC-2015-17156).Publicad
    • …
    corecore