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Non-Hermitian topological whispering 
gallery

Bolun Hu1, Zhiwang Zhang1 ✉, Haixiao Zhang1, Liyang Zheng2, Wei Xiong1, Zichong Yue1, 
Xiaoyu Wang1, Jianyi Xu1, Ying Cheng1 ✉, Xiaojun Liu1 ✉ & Johan Christensen2 ✉

In 1878, Lord Rayleigh observed the highly celebrated phenomenon of sound waves 
that creep around the curved gallery of St Paul’s Cathedral in London1,2. These 
whispering-gallery waves scatter efficiently with little diffraction around an enclosure 
and have since found applications in ultrasonic fatigue and crack testing, and in the 
optical sensing of nanoparticles or molecules using silica microscale toroids. 
Recently, intense research efforts have focused on exploring non-Hermitian systems 
with cleverly matched gain and loss, facilitating unidirectional invisibility and exotic 
characteristics of exceptional points3,4. Likewise, the surge in physics using 
topological insulators comprising non-trivial symmetry-protected phases has laid the 
groundwork in reshaping highly unconventional avenues for robust and 
reflection-free guiding and steering of both sound and light5,6. Here we construct a 
topological gallery insulator using sonic crystals made of thermoplastic rods that are 
decorated with carbon nanotube films, which act as a sonic gain medium by virtue of 
electro-thermoacoustic coupling. By engineering specific non-Hermiticity textures to 
the activated rods, we are able to break the chiral symmetry of the whispering-gallery 
modes, which enables the out-coupling of topological ‘audio lasing’ modes with the 
desired handedness. We foresee that these findings will stimulate progress in 
non-destructive testing and acoustic sensing.

Understanding topological phases in non-Hermitian settings 
has become a thriving area in many research fields such as 
condensed-matter physics, cold atoms physics, and classical optics 
and acoustics. Specifically, efforts are motivated by the quest to expand 
on exclusive topological phases in non-Hermitian settings, which have 
no Hermitian counterpart7,8. Among the most acclaimed examples are 
the non-Hermitian skin effect, the unconventional non-Bloch bulk–
boundary correspondence and topological lasers9–18. Topological lasers 
constitute an appealing area in terms of applications, in that topologi-
cally resistant edge states—which are robust against imperfections and 
fabrication defects—would be set to lase when combined with optically 
active media. Lasers are fundamentally non-Hermitian, but have lately 
gained this unprecedented benefit owing to the added ingredient of 
topology reported in active Su–Schrieffer–Heeger arrays19,20, coupled 
ring resonators21,22, exciton–polariton insulators23 and topological 
photonic crystals24,25.

Creating non-Hermiticity for sound waves in terms of a gain medium 
let alone an equivalent laser is highly challenging; yet loudspeakers with 
appropriate gain circuits or the acoustoelectric effect using piezo semi-
conductors could do the job3,26. However, a more flexible and tunable 
approach is posed by employing thermoacoustics where fluctuating 
Joule heating is converted into sound, for example, when an alternat-
ing current is applied to a conductor27. This electro-thermoacoustic 
coupling has been proven to be notably efficient in carbon nanotube 
(CNT) films owing to their low heat capacitance and thermal inertia, 

permitting broadband and high-pressure acoustic wave generation28,29 
(Methods). Here we construct a whispering-gallery (WG) insulator using 
a triangular sonic crystal made of acrylonitrile butadiene styrene (ABS) 
rods that is capable of sustaining topological valley edge states along 
its interface that are protected by the underlying lattice symmetry. The 
valley degree of freedom was first used in condensed-matter physics, 
but has since found use in artificial lattices in which the suppression 
of intervalley scattering enables robust and compact guiding of light 
or sound30–32. To get the acoustic valley edge states to ‘lase’, a topo-
logical lattice needs to be implemented by means of an acoustic gain 
medium, which we accomplished by pasting CNT films around the 
insulator rods. Our experimental measurements reveal how the WG 
mode chirality can be broken—that is, we split the symmetry among 
the clockwise (CW) and the counterclockwise (CCW) resonances by 
adequately tuning the electrically imposed non-Hermiticity. Not only 
do these topological WG modes revolve around the enclosed sonic 
insulator through its complex edge states, but we also demonstrate 
the capability to out-couple amplified and focused sound emission 
at audible frequencies.

Non-Hermitian topological lattice
Before we analyse the electrically assisted thermoacoustic genera-
tion of sound in a topological WG insulator, we discuss topological 
modes in lattices executing acoustic gain. In doing so, we 
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theoretically introduce an active fluid layer of thickness t whose real 
effective mass density is that of air ρ0, whereas the imaginary com-
ponent is controlled through a non-Hermiticity gain factor β, that 
is, ρ = (1 + iβ)ρ0 (Methods). In a time-reversal symmetric setting, we 
consider a triangular sonic lattice in air comprising rigid cylinder 
trimers that are coated by the active layer as illustrated in Fig. 1a. 
This so-called kagome lattice33,34 facilitates a valley pseudospin that 
can be retrieved prototypically by breaking the spatial-inversion 
symmetry to access opposite Berry curvatures at the Brillouin zone 
corners. At moderate gain levels, the topological properties can 
indeed be well characterized by a quasi-Hermitian topological 
valley-Chern number (Methods). Hence, when the trimers are 
arranged upright, the topological valley-Chern index is C = ±′(K,K ) 1

2 ; 
however, when inverted, the index becomes C =(K,K′) 1

2∓ . In Fig. 1b, 
we compute the corresponding complex band diagram involving 
gain with β = 0.05 (solid (dashed) curves represent the real (imagi-
nary) bands). The gapped Dirac cone features a pair of pseudospin 
valley states K1/K2 comprising negative imaginary eigenfrequencies 
that account for sound amplification. Interestingly, when the 
non-Hermiticity is steadily increased, the real component of the  
bulk states shows no effect (Fig. 1c); however, a linear thresholdless 
growth of their imaginary components against β is clearly seen. 

Whether amplifying acoustic states also sustain at interfaces is best  
demonstrated by designing a non-zero valley-Chern index, 

C C CΔ = − ≠ 0′ ′ ′(K,K )
I
(K,K )

II
(K,K ) , across the interface between two adjacent 

insulators (I and II) as depicted in the inset of Fig. 1d. The real band 
diagram shows the well known valley-projected edge states inside 
the bandgap. Moreover, Fig. 1e shows the imaginary counterpart, 
which indicates that topological edge states undergo sound ampli-
fication along the interface in the presence of gain (β ≠ 0) by virtue 
of their negative values (Im(f)  <  0) and enhanced edge-state 
intensities.

Experimental realization
We used three-dimensional (3D) printing to make the rods out of ABS 
plastic, including two voids to act as the moulds into which electrodes 
were cast, which connect to the CNT films that were pasted around the 
rods (Fig. 2a). In the last step, several rods were assembled into a tri-
angular lattice and mounted to an electrical circuit board, as depicted 
in Fig. 2b (Methods). With an appropriately applied time-varying 
current, each coated rod operates as an acoustic source through the 
electro-thermoacoustic coupling. Moreover, as shown in Fig. 2, we are 
able to electrically invoke a phase delay to each rod in the unit cell, 
which has the advantage of enabling both phase and amplitude control 
over extended finite configurations. The thermoacoustic emission of 
sound simulated in Fig. 2c illustrates the case in which all rods emit 
sound coherently with zero phase delay ϕ = 3(ϕj+1 − ϕj) = 0 with j = 1, 2, 
which results in a zero relative phase emanating each triangle edge as 
measurements show in Fig. 2d. However, with deliberate phase jumps 
within the unit cell, that is, ϕ1 = 0, ϕ2 = 2π/3 and ϕ3 = −2π/3, accord-
ing to the underlying lattice symmetry, the acoustic edge emissions 
acquire equivalent relative phase advancements as shown in Fig. 2e, 
f. These findings imply that an appropriate gain texture within the 
truncated lattice facilitates deterministic edge emission control (see 
Supplementary Video 1 for the time evolution), which is the corner-
stone of non-Hermitian chiral symmetry breaking as we discuss in 
the following.

Whispering-gallery mode splitting
In Fig. 3a, we show the fabricated finite triangular lattice capable of host-
ing interface valley states. These states are borne from the underlying 
lattice symmetry and run along the domain wall (green dashed line) 
across which upright (Δ < 0) and inverted (Δ > 0) cylinder trimers are 
arranged (here Δ symbolizes the geometrical perturbation34). Moreo-
ver, as the magnification near the domain wall in Fig. 3b shows, only 
a narrow area is considered, the cylinders of which are coated by the 
acoustic gain medium. Conventional WG modes have degenerate CW 
and CCW resonances, the frequencies of which are identical. As shown 
in Fig. 2, acoustic waves emanating from the edges of a triangular lat-
tice can be readily controlled through appropriately phase-engineered 
gain in the unit cell. Along the topologically non-trivial interface that 
encompasses a triangular circumference (Fig. 3a), we are able to launch 
valley-projected edge states using a three-channel signal generator 
(Methods) where the electrical phase and amplitude can be precisely 
controlled to power the CNT-film-decorated rods surrounding the 
topological domain wall. After multiple acoustic round trips along the 
circumference of length L, the phase is accumulated from each of the 
three edges of the WG insulator. Thus, several WG resonance triplets 
are generated through the non-Hermitian phase arrangement:

k L m

k L m

/3 = 2π

/3 = 2π ± 2π/3,
(1)0

±

where m is an integer, and k0 and k± correspond to the achiral,  
CW (−) and CCW (+) WG wavenumbers, respectively (Methods).  
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Fig. 1 | Complex band diagram of a sonic topological insulator with acoustic 
gain. a, Illustration of the non-Hermitian topological lattice. The inset 
shows the primitive cell, composed of three rigid cylinders that are covered by 
an active layer of thickness t = 0.1r. b, Finite-element simulations show the real 
(solid lines) and imaginary (dashed lines) bands in the presence of gain via the 
non-Hermiticity factor β = 0.05. The red and blue coloured curves represent 
the first and second bands, respectively. c, Increasing the factor β shows how 
the real valley states K1 (red lines) and K2 (blue lines) remain spectrally 
unaffected; their imaginary part (dashed lines), however, grows linearly in 
amplification strength. d, Valley-edge dispersion for a sonic insulator with a 
zigzag-type interface, which separates two topological lattices of opposite 
valley-Hall phase. Grey dots and purple curves represent the real bulk and 
valley-projected edge states, respectively. The shaded blue region marks  
the topological bandgap. The inset shows a schematic of the interface.  
e, Hermitian (grey) versus non-Hermitian (coloured dots) in-gap edge states 
along the imaginary frequency axis. Insets: valley edge states at their 
corresponding values of β.
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We experimentally detect the WG modes by averaging the signal 
probed by microphones at several points along the domain wall, fol-
lowed by quantification of the amplification factor compared with 
a straight interface (Methods). When all coated cylinders are set to 
emit sound simultaneously (ϕ = 0), the excited in-gap valley edge state 
breathes in the absence of angular momentum (achiral) at frequency 
f0 = 8,995 Hz (Fig. 3c). Theoretically, we show that at that frequency, 
only identical bidirectional modes exist, unlike the chiral modes at 
f− = 8,885 Hz and f+ = 9,099 Hz, whose forward and backward wave 
components both destructively interfere (Methods). Contrary to 
this, the breathing mode (f0) ceases to exist at ϕ = 2π, whereas the two 
in-gap chiral WG modes each acquire a complete handedness, that 
is, the chiral symmetry is broken and the f− (f+) WG resonance is set 
to emit topologically spinning sound in a strict CW (CCW) fashion. 
The corresponding detected and simulated amplification factors are 
shown in Fig. 3d, e at gain advancement phases of ϕ = π and ϕ = 2π, 
respectively. Additional measurements in Fig. 3f again clearly show 
how the amplification of the breathing mode decays with growing 
phase ϕ in contrast to the two growing chiral modes. To visualize 
this behaviour, we map the acoustic pressure of the WG lattice for 
the said resonances. With gain phases from ϕ = 0 to ϕ = 2π, Fig. 3g−i 
clearly shows both chiral and achiral edge-state confinements at the 

respective WG modes (see Supplementary Video 2 for the time evolu-
tion). The influence of the inherent viscosity and the robustness of 
the structure are studied carefully in Methods.

Chirality routing
We add a router to the topological WG insulator to make the 
out-coupling of the non-Hermitian WG modes through either of its 
two ports possible, as shown in Fig. 4. Moreover, this approach allows 
for the separation of acoustic signals of opposite propagation chirali-
ties (Methods). Spectrally, we both compute and observe the pressure 
amplitude at both router ports (Fig. 4a for output 1 and Fig. 4b for 
output 2) when the gain phase is chosen to be ϕ = 2π. The f− WG mode 
shows a remarkable peak when measured at output 1 owing to the 
conservation of the CW angular momentum preserved at the router. 
By contrast, sound only emerges at output 2 when CCW-polarized by 
virtue of a strong peak at f+. Compared with the scenario of coherent 
emission (ϕ = 0) at which sound radiates as collimated beams from 
both ports through the WG breathing mode at f0 (Fig. 4c), waves ema-
nate through selective output ports in the form of highly directive 
beams in accordance with their polarization. In particular, the CW 
(CCW)-polarized WG mode f− (f+), which is carried by the respective 
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Fig. 2 | Assembly and non-Hermitian phase engineering. a, ABS rods are 
3D-printed with moulds into which contacts are cast, whereupon CNT films are 
pasted around each rod. b, Several groups including six unit cells are assembled 
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at f = 8.8 kHz within the topological bandgap. d, Simulations (Sim.) and  

experiments (Exp.) depict equal phases emanating from the edges at the lattice 
near-fields. e, By contrast, now the phase increment acquires 2π/3 to assume a 
full gain cycle of ϕ = 2π. f, Here, the breaking of chirality is made possible through 
asymmetric phase textures, giving rise to different edge radiation phases. The 
insets in c, e show a magnification of the edge near-fields. In between c and e, the 
unit cell is depicted, comprising the individual phase contributions ϕj. Blue 
shaded regions in d, f represent the frequency range of the topological 
bandgap. Experimental data in d, f are represented as mean ± s.d. of 
six independent measurements.
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non-Hermitian topological edge states. On the basis of this approach, 
we devised a whispering-gallery resonator whose conventional degen-
erate resonances are mode split and controlled through the phase 
that is imprinted on the gain elements. We collect these mode-split 
whispering-gallery modes by routing highly collimated audible beams 
on the basis of their chiralities. We foresee that the combination of 
topologically protected acoustic resonances with non-Hermitian 
ingredients in the form of gain may enable new technological avenues 
beyond the already far-reaching scientific implications. Amplified 
steering and guiding of sound in a topologically robust environ-
ment may improve acoustic communication systems. When scaled 
to micrometre and nanometre scales, electromechanical filtering in 
broadband cellular telecommunication networks has the potential 
to capitalize on non-Hermitian gigahertz topology. Also, combining 
sonic lattices with CNT films may facilitate engineered active control.
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valley projected edge state, emerges highly focused from output 1 
(output 2), as seen in Fig. 4d. This functionality is displayed through 
simulated spatial acoustic energy maps at two different gain phase 
structures, as shown in Fig. 4e. Here, directive sound beams split sym-
metrically through both ports at f0(ϕ = 0) and selectively in response 
to the propagation chirality at f±(ϕ = 2π). We anticipate that the highly 
directional and electrically controlled amplified sound beams could 
lead to an improved image quality by reducing the effects of poor 
resolution and speckles, which may have an impact in non-destructive 
testing and acoustic sensing.

Discussion and outlook
In summary, we have used the electro-thermoacoustic coupling 
from CNT films as a gain medium in sonic valley-Hall lattices to set up 

corresponding to the WG mode order m = 27. The colour bar represents the 
intensity ±Ix along the lower domain wall of the rightward-/leftward-going 
wave, that is, the CCW/CW mode. f, For several gain phases ϕ, the amplification 
factors among the three in-gap modes are experimentally evaluated and fitted 
(Fit.). g–i, Chirality and field control of the three resonances with f− (g), f0 (h) 
and f+ (i) at three different gain-phase textures. The acoustic simulations are 
conducted for finite topological WG insulators as depicted in a. Experimental 
data in f are represented as mean ± s.d. of four independent measurements.
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c, d, Simulated directional far-field radiation patterns of the out-coupled 

topological chiral and achiral WG modes at gain phases ϕ = 0 (c) and ϕ = 2π (d). 
e, Acoustic energy maps of the WG lattice are shown for the corresponding 
modes at their respective frequencies f− = 8,889 Hz, f0 = 9,001 Hz and 
f+ = 9,106 Hz. The inherent viscosity μ = 2.9072 × 10−5 Pa s and the thermal 
conductivity χ = 0.0258 W (m K)−1 of air are considered in the simulations.
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Methods

Numerical simulations, device fabrications and measurements
The numerical results presented in this work were calculated using the 
commercial finite-element-method simulation software COMSOL Mul-
tiphysics. In the band-structure and pressure-field calculations of the 
lossless system, physical models were established and analysed in the 
pressure acoustic module, including the detailed structures with actual 
geometric dimensions. The inherent viscosity μ = 2.9072 × 10−5 Pa s and 
the thermal conductivity χ = 0.0258 W (m K)−1 of air were introduced to 
the simulations conducted by the thermoviscous acoustic module when 
the inherent viscosity of the background air is taken into consideration. 
The boundaries of the 3D-printed core cylinders can be modelled as 
hard-wall boundary conditions owing to the large acoustic impedance 
mismatch between the matrix medium of air and the printing materials 
of ABS. The standard parameters used for air were the mass density 
ρ0 = 1.2059 kg m−3 and sound speed c0 = 343.58 m s−1 under an ambient 
pressure of 1 atm at a temperature of 21 °C. In each basic unit cell as shown 
in Fig. 1a, there were three identical cylindrical rods with a radius 
r = 0.30 cm, placed on the vertexes of an equilateral triangle, with the 
adjacent centre-to-centre interval D = 0.69 cm. The lattice constant is 
a = 2.17 cm. The largest mesh element size was lower than one-tenth of 
the shortest incident wavelength. We refined the meshes surrounding 
the thin meta-fluid layer with thickness t = 0.1r. The effective acoustic 
gain of the meta-fluid layer shown in Fig. 1 was modelled through a 
positive imaginary part of the mass density iβρ0 (ρ0 for air). The active 
CNT film attached to each gain rod can be regarded as a thermal-acoustic 
gain, which functions as a vibrating surface with the normal displacement 
d d d= e = ej

ϕ j
0

i
0

i( −1)j
ϕ
3, where j = 1, 2, 3 is the number of rods in the unit cell 

and d0 = 0.01r represents the initial displacement. In the band-structure 
calculations, Floquet periodic boundary conditions were implemented 
at the boundaries of the periodic cells or strips. In the pressure-field 
calculations, plane-wave radiation conditions were imposed at the exte-
rior facing the air domain to eliminate interference from reflected waves. 
To obtain the amplification ratio, we first averaged the absolute pressure 
fields along the infinite straight topological waveguides with the fre-
quency ranging from 8,840 Hz to 9,160 Hz as the reference, which can 
be labelled as P0. After introducing the topological WG insulator, the 
averaged absolute pressure fields along the bottom domain wall were 
calculated as P. Then, the amplification ratio can be obtained as P/P0; 
the results are plotted in Fig. 3c–e.

The assembled device was composed of two parts: the 
precision-fabricated gain elements and the customized printed cir-
cuit boards (PCBs). Figure 2a illustrates the fabrication work flow of a 
single element. We used CNT films synthesized by a high-temperature 
chemical-vapour-deposition method from the same batch to guarantee 
the uniformity. The CNT films were cut into small rectangular pieces. 
We experimentally measured the sheet resistance of each film using 
a four-probe meter (type RTS-2, which complies with ASTM F84) and 
screened out the films with the sheet resistance ranging from 1.3 Ω sq−1 
to 1.6 Ω sq−1, which fulfil the experimental requirement. Each piece of 
rectangular CNT film was pasted tightly around the surface of the rigid 
cylindrical cores, which were 3D-printed with heat-resistant ABS plastic. 
The diameter and height of cylinder were 6 mm and 14 mm, respectively. 
Two edges of the CNT film were fixed inside the two vertical slots, inside 
which we also cast silver-paste contacts. These contacts were soldered 
to a double-layer top PCB (yellow or blue in photos in Figs. 2–4), which 
were coupled to the six-layer bottom PCB motherboard (green) via 
connectors, from which the programmable circuit is controlled to 
achieve full electro-thermoacoustic control.

During the measurements, one plate of Plexiglass was used to cover 
the whole sample. In this scenario, the 2D approximation was appli-
cable as the planar waveguide supported the propagating mode uni-
formly along the rod axis for the wavelengths under consideration. 
Cone-shaped sound absorbing foams were mounted around the testing 

area to minimize the boundary reflections from open space. As shown 
in Extended Data Fig. 1, the excitation signals were controlled by two 
clock-synchronized arbitrary waveform generators (NI PXIe-5423) 
through pre-programmed LabVIEW software, and were amplified by 
the power amplifiers (YAMAHA P-5000). Afterwards, we calibrated the 
excitation signals to eliminate the phase and amplitude offset generated 
by the asynchronous power amplifiers. Local pressure fields and the 
phases were measured by inserting 1/4-inch condensed microphones 
(GRAS 40PH) into the top plate at the designated positions. The output 
signals of the microphones were acquired by a digitizer (NI PXI-4499). 
In the experiments, we carried out accurate temperature control of the 
device with the help of an infrared thermal imager (FOTRIC 348) and a 
thermocouple thermometer (Fluke 52-II).

Effective Hamiltonian
Let us begin with the effective Hamiltonian in Hermitian systems with-
out considering a gain medium. Based on the k⋅p method35,36, the wave 
dynamics around the Dirac cone at the K point is given by

ψ ψH λΔ = , (2)D D

where ψ and λD  represent the wave functions and the reduced Dirac 
frequency respectively. We demonstrate that the existence of the Dirac 
cone at the K point in our sonic crystal is protected by the C3v symmetry. 
From the schematic of the unit cell shown in Extended Data Fig. 2a, it 
is clear that a C3 rotational symmetry (blue arrows) exists together with 
three mirrors M1, M2 and M3, leading to the appearance of the doubly 
degenerate Dirac cones at the boundaries of the first Brillouin zone, 
as can be seen from the band diagram shown in Extended Data Fig. 2b. 
Considering this symmetry protection, the reduced Hamiltonian 
around the K point can be mapped into a standard massless Dirac Ham-
iltonian H v k σ k σΔ = (Δ + Δ )x x y yD D , and λD = f − fD with f the sound wave 
frequency and fD the Dirac frequency; vD is the group velocity; Δki 
(i = x, y) is the distance from the Dirac points; and σi (i = x, y) represents 
the Pauli matrix. As depicted in Extended Data Fig. 2d, rotating the 
cylinders in the unit cell by a non-zero angle of θ ≠ nπ/3 (n = 1, 2, 3) 
reduces the symmetry from C3v to C3. In this case, we demonstrate that 
the Dirac cones at the K/K′ points will be gapped as shown in the band 
diagram of Extended Data Fig. 2e with θ = −π/6. The rotation operation 
introduces perturbations and leads to an effective mass term in the 
Dirac Hamiltonian

b σ λΔ = (Δ + ) = , (3)zD 0ψ ψ ψH H

where b0 is the effective mass caused by the symmetry reduction and 
λ = f − fD − a0, with a0 a bias quantity to slightly shift the frequency due 
to the perturbation of symmetry reduction. Then the dispersion rela-
tions near the K point can be derived by

f f a v k k b= + ± (Δ + Δ ) + . (4)x yD 0 D
2 2 2

0
2

Here taking the case with the rotation θ = −π/6 as an example, the cor-
responding parameters vD ≈ 29.72 m s−1, a0 ≈ 45.95 Hz and b0 ≈ 525.25 Hz 
can be retrieved from the numerical data in Extended Data Fig. 2e. 
Accordingly, the theoretically predicted dispersion relations near the 
K point from the k⋅p method are added into Extended Data Fig. 2b, e as 
marked by black solid lines, showing good agreement with the numeri-
cal data from the finite-element method.

Next, we coat the rigid cylinders by the gain medium with the factor 
β. Note that the rotational and mirror symmetries of the system cannot 
be broken by the introduced non-Hermiticity. As a result, the existence 
of the Dirac cone at the K point with θ = 0 and the gapped valley states 
with θ = −π/6 still can be predicted when the acoustic gain is considered, 
as shown in the band diagrams of Extended Data Fig. 2c, f, respectively. 
The small amount of gain with β = 0.05 can be considered as a small 
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perturbation on the wave dynamics around the Dirac cone, which sug-
gests the governing equation under C3v symmetry to be

ψ ψ ψγ σ λΔ ′ = (Δ + i ) = . (5)D D 0 0 DH H

The gain term is approximated by γ0 ≈ t0β where t0 ≈ −439.4 is obtained 
from numerical data. As the gain term iγ0σ0 is purely diagonal, we can 
rewrite the governing equation as

ψ ψλΔ = ′ , (6)D DH

with λ λ γ′ = − iD D 0. When comparing equation (2) with equation (6), it is 
apparent that the systems share the same form except that λ′ contains 
an imaginary part stemming from gain. At this stage thus, it can be 
concluded that in the presence of gain Δ DH  remains Hermitian; how-
ever, the eigenvalues will show wave amplification.

Subsequently, on reducing the symmetry C3v to C3 to gap the Dirac 
cone, we obtain

ψ ψ ψH H b σ λΔ ′ = (Δ + ′ ) = ′ , (7)zD 0

with the modified mass term b b γ′ = + i0 0 2  and λ λ γ γ′ = − i( + )0 1 . For
β = 0.05, we find that γ0 ≈ −21.97 Hz, γ1 ≈ 0.78 Hz and γ2 ≈ 6.19 Hz. Equa-
tion (7) also shows a similar form compared to equation (3) except that 
the effective mass and the eigenfrequency are modified by gain. We 
then obtain the following dispersion relation

f f a γ γ v k k b γ= + + i( + ) ± (Δ + Δ ) + ( + i ) . (8)x y± D 0 0 1 D
2 2 2

0 2
2

Accordingly, the predicted dispersion relations (real part) for β = 0.05 
around the Dirac point that are marked by black solid lines in Extended 
Data Fig. 2c, f show good agreement with the numerical data from the 
finite-element method.

Topological invariant
We first consider the Hermitian system, that is, without gain. Accord-
ing to the effective Hamiltonian derived from the k⋅p method, a massive 
Dirac Hamiltonian H v k σ k σ b σΔ = (Δ + Δ ) +x x y y zD 0    is introduced by 
breaking the mirror symmetry. Owing to the time-reversal symmetry, 
the massive Dirac Hamiltonians at the K and K′ points satisfy the rela-
tion H HΔ (K) → − Δ (K′). Hence, the effective mass has the opposite sign 
at the K and K′ points with M M= − ′K K . The non-zero mass term induces 
a local quadratic Berry curvature around the K/K′ points, which can be 
integrated at each valley as the valley-Chern index32,37

C M=
1
2

sgn( ). (9)′ ′K,K K,K

Taking the sonic crystal with θ = −π/6 as an example (shown in 
Extended Data Fig. 2d), the effective mass terms MK = b0 and M b= −′K 0 
at the K and K′ valleys guarantee the topological valley-Chern index as 
C =K

I 1
2  and C = −′K

I 1
2 , respectively. Note that the zero Chern number 

C C C= + ′K K  is preserved under time-reversal symmetry. However, the 
mass term changes the sign when the unit is rotated to θ = π/6, which 
results in the topological valley-Chern index as C = −K

II 1
2  and C =′K

II 1
2 . 

Therefore, for a domain wall separating these two regions, the topo-
logical invariant difference across the domain wall can be obtained as

C C C C C CΔ = − = − 1, Δ = − = 1. (10)′ ′ ′K K
II

K
I

K K
II

K
I

According to the bulk–boundary correspondence, there will exist the 
topological edge states with the negative velocity projected by K val-
ley, leading to the CW WG modes in the proposed device. The CCW WG 
modes are supported by the topological edge states with the positive 
velocity projected by K′ valley.

Lastly, for the non-Hermitian systems with β = 0.05, the Dirac disper-
sion is described by equation (6) comprising a Hermitian Hamiltonian 
but imaginary eigenvalue λ′ accounting for gain. When the C3v sym-
metry is reduced to C3, the effective mass terms at the K and K′ points 
are slightly modified to MK = b0 + iγ2 and M b γ= − − iK′ 0 2. In our system, 
the parameters of b0 = 525.25 Hz and γ2 ≈ 6.19 Hz satisfy the relations 

≪γ b2 0, MK ≈ b0 and M b≈ −K′ 0. Consequently, the introduced gain with 
β = 0.05 can be regarded as a small perturbation to the system, the 
topological properties of which are thus sufficiently well characterized 
by a quasi-Hermitian topological valley-Chern number.

Comparison between the meta-fluid and thermal-acoustic gain 
models
Here we demonstrate that the ideal meta-fluid layer and the 
thermal-acoustic layer we developed show the same effect for realiz-
ing the enhanced sound field. Indeed, Extended Data Fig. 3 shows the 
enhancement of the outward scattering field amplitude by a single cyl-
inder under the inward radiation of coaxial cylindrical waves, before 
and after introducing the meta-fluid layer (thermal-acoustic gain layer). 
To obtain the scattering enhancement, the scattering field from a bare 
rigid rod (β = 0) is first determined as a reference and then compared with 
covering the rod with a meta-fluid or thermal-acoustic layer (β > 0). The 
corresponding scattering field distributions at f = 9.1 kHz and β = 0.05, 
calculated with both the meta-fluid and the thermal-acoustic gain model, 
are shown in Extended Data Fig. 3a, b, respectively. Extended Data Fig. 3c 
depicts the evolution of scattering enhancement with gain factor β at the 
frequency of 9.1 kHz, in which it can be clearly seen that the scattering 
fields using both the meta-fluid model and the thermal-acoustic gain 
model are enhanced linearly with the increase of β and show almost iden-
tical variation. In other words, such scattering fields characterizing the 
sound field enhancement via a thermal-acoustic layer can be analogously 
described through a meta-fluid layer. Extended Data Fig. 3d shows the 
evolution of the scattering enhancement with frequency at the gain factor 
of β = 0.05. Both the results obtained through the meta-fluid model and 
the thermal-acoustic gain model increase slightly with frequency, which 
can be neglected in practice due to the small increment. The evolutions 
confirm the equivalence of the two models at different frequencies. Note 
that the amplitude of the heat source is set as q = βA0f, with A0 the thermal 
energy flow into air and f the frequency, because the pressure radiation 
of CNT film depends linearly with frequency38. The radius of the rod is set 
to r = 3 mm, and the thickness of the layer of the meta-fluid/heat source is 
set to t = 0.1r. We calculate the average amplitude of the scattering sound 
field within a λ-wide ring located 2λ away from the surface of the rod.

Characterizations of CNT film
We compare the excitation properties of the CNT film and the regular paper 
basin speaker through experiments as shown in Extended Data Fig. 4a. In 
the experiment, a sinusoidal electric signal was used to stimulate the CNT 
film and the speaker, separately. The acoustic and vibration signals were 
measured through a microphone (GRAS 40PH) and a laser vibrometer 
(Polytec PSV-500-HV). For comparison, we kept the diaphragm of the 
speaker localized at the same place as the CNT film to keep the distance 
between the measured object and microphone/vibrometer unchanged. 
Besides, it is worth noting that the heating effect is proportional to27

RI RI ft
RI

ft= sin (2π ) =
2

[1 − cos(4π )], (11)2
0
2 2 0

2

with the supplied alternating electrical signal I = I0 sin(2πft) and R for 
the film’s resistance. As a result, the frequency of the input electrical 
signal should be set as f/2 (4.4 kHz, for example) if the required acoustic 
radiation from the CNT film with the frequency f (8.8 kHz) is needed in 
the experiments. The experimentally measured acoustic and vibration 
signals are described in Extended Data Fig. 4b, c, respectively. We can 
clearly observe that the acoustic pressure amplitudes are almost the 
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same in both situations. However, the surface vibration displacement 
of the CNT film is almost zero but not for the paper basin speaker. This 
indicates that the CNT film generates an acoustic signal through ther-
moacoustic coupling rather than the traditional surface vibrations. When 
the alternating current (sinusoidal signal in our experiment) passes 
through the surface of the CNT film possessing a low heat capacity, the 
heat transmits to the ambient air rapidly and the air around the CNT film is 
expanded and compressed periodically, which generates acoustic waves.

In Extended Data Fig. 4d, we measured the electrical impedance of 
the CNT film, which can be expressed as Z Z= e θ−i Z , within the fre-
quency range from 40 Hz to 20 kHz through a precision impedance 
analyser (Agilent 4294A). The results shown in Extended Data Fig. 4e 
clearly indicate that the impedance Z  of the CNT film stays consistent 
around 1.181 ± 0.005 Ω. The phase of the impedance θZ remains at 0° ± 1°, 
demonstrating that the value of the capacitive reactance and inductive 
reactance are zero. In short, the CNT film is a pure resistive element 
with a certain resistance in the frequency range from 40 Hz to 20 kHz.

In addition, the radiative spreading of single coated rod was meas-
ured at the frequencies of 8 kHz, 8.5 kHz and 9 kHz, which is illustrated 
in Extended Data Fig. 4f. The approximately omnidirectional directivity 
confirms good uniformity of the curved CNT film.

Non-Hermitian mode splitting
The CW and CCW modes that are highly localized along the domain wall 
of the topological WG insulator can be equivalently treated as waves 
that revolve around a triangular enclosure. Thus, the entire path of 
the domain wall encompasses three connected sections, that is, three 
connected waveguides of equal cross-section as shown in Extended 
Data Fig. 5. As the CW/CCW modes are highly localized, their propaga-
tion along the domain wall can be simplified as the transmission of 1D 
waveguide modes described by a 1D Helmholtz equation

p
x

k p
d
d

+ = 0, (12)
2

2
2

where k = ω/v with angular frequency ω and sound velocity v in the 
waveguide, and p being the pressure. On the basis of equation (12), 
the pressure at one end of the waveguide is a function of the other end. 
For instance, the pressure at junction 1 relates to junctions 2 and 3 as

p kl p kl p p kl p kl p= cos( ) − i sin( ) , = cos( ) + i sin( ) , (13)2 1 1 3 1 1

where l is the length of each waveguide. For the triangular domain wall with 
a perimeter L, we have l = L/3. From equation (13), we obtain the relation

p p kl p+ = 2 cos( ) . (14)2 3 1

Taking all the junctions into account, the following governing equation 
of the acoustic waveguide model can be derived

p
p
p

Ω

p
p
p

0
1
2

1
2

1
2

0
1
2

1
2

1
2

0

= , (15)
1
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where Ω = cos(kl). Equation (15) has three eigenvalues Ω = 1, Ω = −1/2 
and Ω = 1/2 with the following WG modes:

k L m k L m k L m/3 = 2 π, /3 =
2π
3

+ 2 π, /3 = −
2π
3

+ 2 π, (16)0 + −

where m is an integer. Given the velocity v in the waveguide, the cor-
responding eigenfrequencies are obtained through f = kv/2π.

Next we consider that the pressure at each junction is the sum  
of the CW and the CCW modes p A B= e + ei

kx kx−i ii i     where A (B) is  
the amplitude of the CCW (CW) mode. By choosing p1 = A + B as  
the reference, the other two junctions obtain the following 
expressions

p A B p A B= e + e , = e + e , (17)φ kl φ kl ζ kl ζ kl
2

i −i i +i
3

i −2i i +2i

where φ(ζ) is the accumulated phase from junction 1 to junction 2 (3) 
as collected through gain. As shown in Extended Data Fig. 5, it should 
be noted that the accumulated phase φ from junction 1 to 2 can be 
obtained from the radiative phase α3 along edge 3 and α2 along edge 2 
according to the relation φ = α3 − α2. In the same way, the accumulated 
phase ζ from junction 1 to 3 satisfies the relation ζ = α1 − α2. In matrix 
form the pressure fields read

p
p
p

U A
B

U= , with =
1 1
e e
e e

. (18)φ kl φ kl

ζ kl ζ kl

1

2

3

i −i i +i

i −2i i +2i











































When substituting those junctions pressure fields into equation (15) 
and multiplying U†/3 (where † denotes the conjugate transpose) on 
both sides, the following equation is obtained

Q A
B

Ω s
s

A
B

Q
q q

q q
= 1

1
, with = . (19)

11 12

12 22
∗ ∗






































Therein, the matrix elements are expressed as

s =
1
3

(1 + e + e ), (20a)kl kl2i 4i

q φ ζ kl φ kl ζ kl=
1
3

[ cos( − + ) + cos( − ) + cos( − 2 )], (20b)11

q φ ζ φ ζ=
1
3

[e cos( − ) + e cos + e cos ], (20c)kl kl kl
12

3i i 2i

q φ ζ kl φ kl ζ kl=
1
3

[ cos( − − ) + cos( + ) + cos( + 2 )]. (20d)22

Now we demonstrate that once the frequency and the phases 
φ  and ζ  are given, the mode behaviour can be analysed  
accordingly.

Case I. For k = k−, equation (19) simply reduces to

   










Q A
B

Ω A
B

= , (21)

with eigenvalue Ω = −1/2. When the gain phase ϕ = 2π, which results 
in the phases φ = −2π/3 and ζ = 2π/3, is introduced into the system as 
has been accomplished in this work, equation (21) has the non-trivial 
solution

   










A
B

= 0
1

. (22)

Equation (22) directly suggests that the CCW mode is completely sup-
pressed (A = 0) while the CW mode (B = 1) only is allowed to propagate 
along the domain wall, which is shown in the last plot of Fig. 3g. On 
the contrary, changing the signs to φ = 2π/3 and ζ = −2π/3 results in 
[A; B] = [1; 0], which leads to a reversed chirality. Note that for the intro-
duced gain phase ϕ = 0 accompanied by the resulted phases φ = ζ = 0, the 
CW and CCW chiral modes cannot be excited. In this case, the governing 
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equation, that is, equation (15), has the following eigenmodes at eigen-
value Ω = −1/2

p
p
p

p
p
p

=
−1
0
1

or =
−1
1
0

. (23)
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The components of these eigenmodes indicate that these modes can 
be excited only when two of the junctions possess the opposite signs. 
However, for φ = ζ = 0, the pressures at the three junctions have identical 
signs. Hence, the WG modes cannot be supported.

Case II. For k = k+, equation (19) reduces to the identical form as equa-
tion (21). However, the introduced phases φ = −2π/3 and ζ = 2π/3 result 
in the non-trivial solution

A
B

= 1
0

. (24)   










Thus, the CW mode is forbidden while the CCW mode is allowed along the 
domain wall. Likewise, as before, this scenario is reversed when the signs of 
the phases are changed. According to the analysis in case I, the WG modes 
do not exist in this case under the introduced phases φ = ζ = 0, either.

Case III. For k = k0, equation (19) can be rewritten as

ξ Ω A B( − )( + ) = 0, (25)

where ζ = 1/3[cos(φ − ζ) + cosφ + cosζ]. Equation (25) indicates that the 
non-trivial solution only exists when ξ = Ω, that is, φ = ζ = 0, where the 
CCW and CW modes are coupled and thus the chirality of the WG mode 
is inhibited. The introduced gain phase ϕ = 2π leads to ξ ≠ Ω, indicating 
the trivial solution where the breathing modes emerge destructively.

In our study, the effective perimeter of the WG is L = 1.539 m and 
the velocity v = 170.89 m s−1 is calculated from the slope of dispersion 
relations of the topological edge states shown in Fig. 1d. Substituting 
these parameters into equation (16) leads to corresponding eigen-
frequencies f− = 8,883 Hz, f0 = 8,994 Hz and f+ = 9,105 Hz, at the order 
m = 27. Supplementary Video 2 visualizes the dynamic fields of these 
three modes.

Influence of the inherent viscosity
Taking the inherent loss of the system into consideration, Extended 
Data Fig. 6 illustrates the simulated results of the topological WG mode 
splitting, where the dynamic viscosity of air μ = 2.9072 × 10−5 Pa s and 
the thermal conductivity χ = 0.0258 W (m K)−1 were introduced in the 
thermoviscous acoustic module of COMSOL Multiphysics. Extended 
Data Fig. 6a–c illustrates the corresponding spectrally resolved ampli-
fication factors and Extended Data Fig. 6d–f depicts the pressure-field 
distributions at the respective resonances with different gain-phase 
textures ϕ = 0, ϕ = π and ϕ = 2π. Compared with the lossless cases in 
Fig. 3, we demonstrate that the unavoidable loss in the systems leads to 
the decrease of the amplification factors accompanied with negligible 
frequency shifts. However, we emphasize that the topological WG mode 
splitting is perfectly preserved. The excited in-gap valley edge states 
breath in the absence of angular momentum (achiral) at frequency f0 
with ϕ = 0 but the propagating CW/CCW topological WG modes can be 
found at frequency f−/f+ with ϕ = 2π, which agrees well with the lossless 
cases in the main text.

Physical mechanism of the selective emission
To separate the acoustic signals with opposite propagation chirali-
ties, we replace the left-bottom part of the sample in Fig. 3, which is 
composed of inverted trimers, by the structures consisting of upright 

trimers as marked by the red dashed frame in Extended Data Fig. 7a. In 
this case, a router with two outputs is formed to make the out-coupling 
of the non-Hermitian WG modes possible. We demonstrate that the 
valley-selective emission phenomenon roots in valley-projected 
physics. In Fig. 1d, one can see that the topological edge states with 
positive/negative group velocity are projected from the K′/K valley. 
Accordingly, the topological WG mode with CW chirality at f− is pro-
jected from the K valley as shown in Extended Data Fig. 7b, whereas 
Extended Data Fig. 7c illustrates the K′ valley-projected topological 
WG mode with CCW chirality at f+. After introducing the router with 
the two ports, only the K valley-projected edge states are extracted 
in Extended Data Fig. 7b. Note that the sound transmission towards 
output 2, which should be projected by K′ valley, is inhibited at f− due 
to the mismatch of the projected momentum. This results in a highly 
directional sound beam emanating through output 1. This efficient 
coupling is made possible by the matching of the parallel component 
of the specific valley wavevector on to the equifrequency curve in 
free space34 as illustrated in Extended Data Fig. 7b. The simulated 
directivity of the radiated energy beam shows good agreement with 
the theoretical prediction as marked by the white arrow. Contrary to 
this, the K′ valley-projected topological WG mode of CCW chirality 
at f+ as shown in Extended Data Fig. 7c now emerges from output 2 
by the same momentum conserving principle.

Thermogram of the topological WG insulator and temperature 
influence
To further demonstrate the thermal-acoustic effect in the system, we 
measured the thermogram of the topological WG insulator before 
and after introducing the electric activation using an infrared ther-
mal imager (FOTRIC 348). Extended Data Fig. 8a shows a photo of the 
imaging area. As illustrated in Extended Data Fig. 8b, the sample and 
the background air have identical temperatures when the system is 
passive (off). However, when the electric signal is turned on, the tem-
perature in the CNT area is much higher than the surrounding passive 
cylinders as is clearly shown in Extended Data Fig. 8c. Extended Data 
Fig. 8d illustrates how the background and sample temperature evolves 
in time during the cyclical excitation of the rods. All measurements 
were conducted under relatively steady temperatures ranging from 
21 °C to 22 °C, as indicated by the purple area in Extended Data Fig. 8d, 
which we monitored with the help of an infrared thermal imager and 
a thermocouple thermometer (Fluke 52-II). Based on this control, we 
aimed to predict the source for the observed frequency shifts at reso-
nance. The relationship between the sound speed and temperature in 
the air can be expressed as

c γRT= , (26)

where R, γ and T represent the molar gas constant, adiabatic expo-
nent and temperature in kelvin, respectively. At finite temperature 
variations, we assume that the wavelength of the WG modes remain 
constant

λ c T f T c T f T= ( )/ ( ) = ( )/ ( ). (27)0 0

Here, f(T0) and c(T0) represent the peak frequency and sound speed at 
T0 = 293.15 K (20 °C in Celsius, the temperature used in the simulations). 
At marginal temperature variations, that is, < 0.02

T T
T
− 0

0
, we linearize 

the temperature-induced frequency shift according to

f T f T
T
T

f T
α T T

c T
( ) = ( ) = ( ) 1 +

( − )
( )

, (28)0
0

0
0

0











with α = 0.607. As Extended Data Fig. 8e shows, numerically simulated 
temperature variations induce the theoretically predicted linear fre-
quency shift among the three WG modes of interest.
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Robustness of the system
To verify the robustness of the system, we construct a fractal geometry 
as shown in Extended Data Fig. 9a. The corresponding energy distribu-
tion at the specific frequency supporting a strict CCW spinning of sound 
is illustrated in Extended Data Fig. 9b. The dynamic pressure-field maps 
(see Supplementary Video 3 for the time evolution) depict not only the 
CCW polarization but also the strong sound confinements along the 
perimeter, which is a convincing indicator of the topological resilience 
along the curved and sharp path.

Next, the influence of instabilities of the excited sound signals from 
the CNT films is considered, which also reflect the possible sample 
fabrication irregularities. The ideal excited sound signals from each 
gain unit in the primitive cell can be expressed as

S S j= e , = 1, 2, 3 (29)j
j ϕ

0
i( −1) /3

as shown by the solid curves in Extended Data Fig. 9c, e. First, a phase 
disturbance of δϕ, randomly distributed within the range from 
−0.2 < δϕ < 0.2 is introduced. We test 20 groups of δϕ values and find 
that the WG modes remain spectrally unaffected. The corresponding 
amplification spectrum at ϕ = 2π, for a randomly chosen case, as marked 
by the dashed curves in Extended Data Fig. 9c, is shown in Extended 
Data Fig. 9d. Subsequently, an equivalent amplitude disturbance of δS is 
also randomly distributed within the range from −0.2S0 < δS < 0.2S0 (S0 
is the original source amplitude) as depicted in Extended Data Fig. 9e, 
f. In both cases, the amplification factor, although slightly altered, 
remains high even in the presence of high disturbances.

To respect the underlying C3v symmetry, we introduced geometrical 
defects both at the corners and the side of the topological WG insula-
tor. We concentrated at one specific gain texture, that is, ϕ = 2π, and 
conducted numerical simulations to compute the WG modes including 
defects comprising gainless, displaced (moved a distance of 0.08a) and 
expanded (increased the centre-to-centre distance by 0.05a) rods along 
the domain wall as shown in Extended Data Fig. 10a. Extended Data 
Fig. 10b shows the spectrally simulated amplification factors under 
the discussed six types of perturbation, showing that the frequency 
and amplitude of both the CW and the CCW modes coincide well with 
unperturbed results presented in Fig. 3. In particular, the field maps in 
Extended Data Fig. 10a show that the CCW resonance f+ remains entirely 
unaffected by the introduced defects.

From the above group of defects, we chose to fabricate three sets of 
units containing displaced cylinder trimers with shifts in the range of 
Δd = 0.04a–0.10a. Identically defected unit cells were thus introduced 
at the corners and afterwards at the centre edges of the WG lattice as 
illustrated in Extended Data Fig. 10c. Thus, the six spectral measure-
ments of the amplification factors as shown in Extended Data Fig. 10d 
show a remarkable immunity to the added defects by virtue of almost 
identical data. As a result of even more pronounced perturbations, 
our system that builds on valley-projected physics cannot longer be 

protected due to the Anderson localizations39. However, recent stud-
ies have reported that increasing the disorder could indeed induce 
a topological phase transition. Such systems are coined topological 
Anderson insulators and provide novel transport properties40–42.
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Extended Data Fig. 1 | Experimental setup for modulating the acoustic gain. The CNT films wrapped around cylinders are connected with the electrical input 
and thus play the role of acoustic gain thanks to electro-thermoacoustic coupling.
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Extended Data Fig. 2 | Symmetry analysis and the dispersion relations 
calculated from the k·p method. a, Schematic of the unit cell under C3v 
symmetry. b, c, Band diagrams of the C3v-symmetric sonic crystal with β = 0  
(b) and with β = 0.05 (c). Coloured circles and solid curves epitomize the 

calculated results from the finite-element method and the k·p method, 
respectively. d–f, Same as a–c, but for the sonic crystal preserved under C3 
symmetry with the rotation angle θ = −π/6.
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Extended Data Fig. 3 | Comparison between amplification through the 
meta-fluid and thermal-acoustic gain. a, b, Simulated scattering pressure 
fields under the inward radiation of coaxial cylindrical waves by the meta-fluid 
model (a) and the thermal-acoustic gain model (b). c, Enhancement of the 

scattering pressure fields calculated by the meta-fluid model (purple line) and 
the thermal-acoustic gain model (orange dots) with different β at f = 9.1 kHz.  
d, Corresponding frequency dependence at β = 0.05.
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Extended Data Fig. 4 | Characterizations of the CNT film. a, Experimental 
setup for measuring the sound pressure and the surface vibration displacement. 
b, Acoustic pressure amplitude spectra measured near the CNT film (solid curve) 
and the loudspeaker (dashed curve). c, Vibration displacements spectra 
measured by laser vibrometry. The solid and dashed curves represent surface 

displacement on the CNT film and the traditional paper basin loudspeaker, 
respectively. d, Photograph of the measurement setup for electrical impedance 
analysis. Inset: enlarged view of the single sample. e, Experimentally measured 
amplitude and phase of the impedance curve. f, Experimentally measured 
directivity pattern.
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Extended Data Fig. 5 | Physical model of the topological WG insulator. The 
proposed topological domain wall can be regarded as a triangular acoustic 
waveguide, and the phase along each edge is labelled as αj, with j = 1, 2 and 3.
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Extended Data Fig. 6 | The influence of loss on the topological WG 
insulator. a–c, Spectrally resolved amplification factors through simulations 
considering the inherent loss with three different gain-phase textures: ϕ = 0 (a), 

ϕ = π (b) and ϕ = 2π (c). d–f, Pressure-field distributions and their chiralities of 
the three resonances at three different gain-phase textures corresponding to 
the frequencies f− = 8,889 Hz (d), f0 = 8,999 Hz (e) and f+ = 9,103 Hz (f).
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Extended Data Fig. 7 | Valley chirality-selective sound emissions of the 
topological WG insulator. a, Left: illustration of the designed device for the 
out-coupling of the chiral WG modes. Right: enlarged view of the router. The 
insets in the right panel show photographs of the cylinder trimers wrapped 
without or with CNT films. b, c, Momentum space analysis of the out-coupled K 

valley-projected topological WG mode of CW chirality at frequency 
f− = 8,889 Hz (b) and K′ valley-WG mode of CCW chirality at frequency 
f+ = 9,106 Hz (c). The white solid hexagon represents the first Brillouin zone and 
the white dashed circle shows the equi-frequency contour in air. Ambient 
thermal colour represents the corresponding simulated sound energy fields.
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Extended Data Fig. 8 | Thermogram of the device and influence of 
temperature. a, Photograph of the sample. b, c, Corresponding thermogram 
of the sample without (passive; b) and with (active; c) applied electric control. 
In a–c, the left column shows the entire sample and the right column shows  
the enlarged view of the partial sample outlined by the dashed frame.  
d, Temperature evolutions of air near the CNT film (blue curve) and in the 

background (orange curve) with time during the measurements. The shaded 
area corresponds to the temperature range of 21–22 °C in the experiments.  
e, The frequency shifts of the peaks corresponding to f−, f0 and f+ under the 
variation of the temperature. Lines and dots represent the theoretical and 
simulated results.
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Extended Data Fig. 9 | Other types of active topological gallery and 
robustness against disturbances. a, Schematic of the WG with a 
snowflake-shaped domain wall. b, Energy distributions of the CCW WG mode 
with ϕ = 2π. c, Introducing phase disturbances. The solid curves in orange, light 

blue and purple represent the undistorted gain signals, and the dashed curves 
represent the distorted gain signals. d, Amplification spectrum including 
phase inhomogeneities with ϕ = 2π. e, f, Same as c, d, but amplitude 
disturbances are introduced instead of phase disturbances.
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Extended Data Fig. 10 | Robustness of the topological WG insulator against 
the geometric defects. a, b, Numerical defect analysis comprising one 
defective unit cell at each corner or side of the structure. At a gain-phase 
texture of ϕ = 2π, we simulate the pressure fields of the system including 
defective units, that is, gainless, displaced or expanded cylinders (a) together 
with their corresponding spectral amplification factors (b). c, Schematic of the 

sample where the red and blue highlighted units label the perturbed rods 
located at the sides and corners, respectively. d, In the experiments, we chose 
three sets of perturbation displacements Δd = 0.04a−0.10a with ϕ = 2π, whose 
measured amplification factors include both corner (top) and side 
(bottom) defects.
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